Suppr超能文献

基于卷积神经网络的运动想象分类的时空频谱特征表示。

Spatio-Spectral Feature Representation for Motor Imagery Classification Using Convolutional Neural Networks.

出版信息

IEEE Trans Neural Netw Learn Syst. 2022 Jul;33(7):3038-3049. doi: 10.1109/TNNLS.2020.3048385. Epub 2022 Jul 6.

Abstract

Convolutional neural networks (CNNs) have recently been applied to electroencephalogram (EEG)-based brain-computer interfaces (BCIs). EEG is a noninvasive neuroimaging technique, which can be used to decode user intentions. Because the feature space of EEG data is highly dimensional and signal patterns are specific to the subject, appropriate methods for feature representation are required to enhance the decoding accuracy of the CNN model. Furthermore, neural changes exhibit high variability between sessions, subjects within a single session, and trials within a single subject, resulting in major issues during the modeling stage. In addition, there are many subject-dependent factors, such as frequency ranges, time intervals, and spatial locations at which the signal occurs, which prevent the derivation of a robust model that can achieve the parameterization of these factors for a wide range of subjects. However, previous studies did not attempt to preserve the multivariate structure and dependencies of the feature space. In this study, we propose a method to generate a spatiospectral feature representation that can preserve the multivariate information of EEG data. Specifically, 3-D feature maps were constructed by combining subject-optimized and subject-independent spectral filters and by stacking the filtered data into tensors. In addition, a layer-wise decomposition model was implemented using our 3-D-CNN framework to secure reliable classification results on a single-trial basis. The average accuracies of the proposed model were 87.15% (±7.31), 75.85% (±12.80), and 70.37% (±17.09) for the BCI competition data sets IV_2a, IV_2b, and OpenBMI data, respectively. These results are better than those obtained by state-of-the-art techniques, and the decomposition model obtained the relevance scores for neurophysiologically plausible electrode channels and frequency domains, confirming the validity of the proposed approach.

摘要

卷积神经网络(CNNs)最近已应用于基于脑电图(EEG)的脑机接口(BCIs)。EEG 是一种非侵入性神经影像学技术,可用于解码用户意图。由于 EEG 数据的特征空间具有高维性,并且信号模式特定于主体,因此需要适当的特征表示方法来提高 CNN 模型的解码准确性。此外,神经变化在不同的会话、同一会话中的不同主体以及同一主体的不同试验中表现出高度的可变性,这在建模阶段导致了重大问题。此外,还有许多主体相关的因素,例如信号发生的频率范围、时间间隔和空间位置,这些因素阻止了稳健模型的推导,该模型可以针对广泛的主体对这些因素进行参数化。然而,以前的研究并没有尝试保留特征空间的多变量结构和依赖性。在这项研究中,我们提出了一种生成可以保留 EEG 数据的多变量信息的时空特征表示的方法。具体来说,通过结合主体优化和主体独立的频谱滤波器来构建 3D 特征图,并将过滤后的数据堆叠到张量中。此外,还使用我们的 3D-CNN 框架实现了分层分解模型,以确保在单次试验的基础上获得可靠的分类结果。所提出模型的平均准确度分别为 BCI 竞赛数据集 IV_2a、IV_2b 和 OpenBMI 数据的 87.15%(±7.31)、75.85%(±12.80)和 70.37%(±17.09)。这些结果优于最新技术的结果,并且分解模型获得了神经生理学上合理的电极通道和频率域的相关性得分,证实了所提出方法的有效性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验