Suppr超能文献

卷积神经网络可以识别解码空间听觉注意力涉及的大脑交互。

Convolutional neural networks can identify brain interactions involved in decoding spatial auditory attention.

机构信息

Max Planck Institute for Empirical Aesthetics, Frankfurt am Main, Germany.

RheinMain University of Applied Sciences Campus Ruesselsheim, Wiesbaden, Germany.

出版信息

PLoS Comput Biol. 2024 Aug 8;20(8):e1012376. doi: 10.1371/journal.pcbi.1012376. eCollection 2024 Aug.

Abstract

Human listeners have the ability to direct their attention to a single speaker in a multi-talker environment. The neural correlates of selective attention can be decoded from a single trial of electroencephalography (EEG) data. In this study, leveraging the source-reconstructed and anatomically-resolved EEG data as inputs, we sought to employ CNN as an interpretable model to uncover task-specific interactions between brain regions, rather than simply to utilize it as a black box decoder. To this end, our CNN model was specifically designed to learn pairwise interaction representations for 10 cortical regions from five-second inputs. By exclusively utilizing these features for decoding, our model was able to attain a median accuracy of 77.56% for within-participant and 65.14% for cross-participant classification. Through ablation analysis together with dissecting the features of the models and applying cluster analysis, we were able to discern the presence of alpha-band-dominated inter-hemisphere interactions, as well as alpha- and beta-band dominant interactions that were either hemisphere-specific or were characterized by a contrasting pattern between the right and left hemispheres. These interactions were more pronounced in parietal and central regions for within-participant decoding, but in parietal, central, and partly frontal regions for cross-participant decoding. These findings demonstrate that our CNN model can effectively utilize features known to be important in auditory attention tasks and suggest that the application of domain knowledge inspired CNNs on source-reconstructed EEG data can offer a novel computational framework for studying task-relevant brain interactions.

摘要

人类听众在多说话者环境中能够将注意力集中在单个说话者身上。选择性注意的神经相关物可以从单个脑电图 (EEG) 数据试验中解码。在这项研究中,利用源重建和解剖分辨率 EEG 数据作为输入,我们试图使用 CNN 作为可解释模型来揭示大脑区域之间特定于任务的相互作用,而不仅仅是将其用作黑盒解码器。为此,我们的 CNN 模型专门设计用于从五秒的输入中学习 10 个皮质区域的成对交互表示。通过仅将这些特征用于解码,我们的模型能够在参与者内达到 77.56%的中位数准确率,在跨参与者分类中达到 65.14%的中位数准确率。通过消融分析以及对模型特征的剖析和应用聚类分析,我们能够辨别出以 alpha 波段为主的半球间相互作用的存在,以及以 alpha 和 beta 波段为主的半球特异性相互作用或在左右半球之间呈现对比模式的相互作用。这些相互作用在参与者内解码时更为明显于顶叶和中央区域,但在跨参与者解码时更明显于顶叶、中央和部分额叶区域。这些发现表明,我们的 CNN 模型可以有效地利用已知在听觉注意力任务中很重要的特征,并表明在源重建 EEG 数据上应用受领域知识启发的 CNN 可以为研究与任务相关的大脑相互作用提供新的计算框架。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fdbc/11335149/5d14648c3194/pcbi.1012376.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验