文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于多视图多表示共识聚类集成(mmcc)方法的增强型网络搜索结果聚类模型。

Enhancing web search result clustering model based on multiview multirepresentation consensus cluster ensemble (mmcc) approach.

作者信息

Sabah Ali, Tiun Sabrina, Sani Nor Samsiah, Ayob Masri, Taha Adil Yaseen

机构信息

Center for Artificial Intelligence Technology (CAIT), Faculty of Information Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia.

出版信息

PLoS One. 2021 Jan 15;16(1):e0245264. doi: 10.1371/journal.pone.0245264. eCollection 2021.


DOI:10.1371/journal.pone.0245264
PMID:33449949
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC7810326/
Abstract

Existing text clustering methods utilize only one representation at a time (single view), whereas multiple views can represent documents. The multiview multirepresentation method enhances clustering quality. Moreover, existing clustering methods that utilize more than one representation at a time (multiview) use representation with the same nature. Hence, using multiple views that represent data in a different representation with clustering methods is reasonable to create a diverse set of candidate clustering solutions. On this basis, an effective dynamic clustering method must consider combining multiple views of data including semantic view, lexical view (word weighting), and topic view as well as the number of clusters. The main goal of this study is to develop a new method that can improve the performance of web search result clustering (WSRC). An enhanced multiview multirepresentation consensus clustering ensemble (MMCC) method is proposed to create a set of diverse candidate solutions and select a high-quality overlapping cluster. The overlapping clusters are obtained from the candidate solutions created by different clustering methods. The framework to develop the proposed MMCC includes numerous stages: (1) acquiring the standard datasets (MORESQUE and Open Directory Project-239), which are used to validate search result clustering algorithms, (2) preprocessing the dataset, (3) applying multiview multirepresentation clustering models, (4) using the radius-based cluster number estimation algorithm, and (5) employing the consensus clustering ensemble method. Results show an improvement in clustering methods when multiview multirepresentation is used. More importantly, the proposed MMCC model improves the overall performance of WSRC compared with all single-view clustering models.

摘要

现有的文本聚类方法一次仅使用一种表示形式(单视图),而多个视图可以表示文档。多视图多表示方法可提高聚类质量。此外,现有的一次使用多种表示形式(多视图)的聚类方法使用的是性质相同的表示形式。因此,将以不同表示形式表示数据的多个视图与聚类方法结合使用,以创建一组多样化的候选聚类解决方案是合理的。在此基础上,一种有效的动态聚类方法必须考虑结合数据的多个视图,包括语义视图、词汇视图(词加权)和主题视图以及聚类数量。本研究的主要目标是开发一种能够提高网络搜索结果聚类(WSRC)性能的新方法。提出了一种增强的多视图多表示共识聚类集成(MMCC)方法,以创建一组多样化的候选解决方案并选择高质量的重叠聚类。重叠聚类是从由不同聚类方法创建的候选解决方案中获得的。开发所提出的MMCC的框架包括多个阶段:(1)获取标准数据集(MORESQUE和开放目录项目 - 239),用于验证搜索结果聚类算法,(2)对数据集进行预处理,(3)应用多视图多表示聚类模型,(4)使用基于半径的聚类数量估计算法,以及(5)采用共识聚类集成方法。结果表明,使用多视图多表示时聚类方法有改进。更重要的是,与所有单视图聚类模型相比,所提出的MMCC模型提高了WSRC的整体性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d3ab/7810326/423d61206022/pone.0245264.g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d3ab/7810326/e88591ebdd7f/pone.0245264.g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d3ab/7810326/b39cdb50f446/pone.0245264.g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d3ab/7810326/8e29ebed3ef2/pone.0245264.g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d3ab/7810326/fecc26f1b3b8/pone.0245264.g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d3ab/7810326/4eb85694179f/pone.0245264.g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d3ab/7810326/a391d02fb80e/pone.0245264.g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d3ab/7810326/423d61206022/pone.0245264.g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d3ab/7810326/e88591ebdd7f/pone.0245264.g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d3ab/7810326/b39cdb50f446/pone.0245264.g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d3ab/7810326/8e29ebed3ef2/pone.0245264.g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d3ab/7810326/fecc26f1b3b8/pone.0245264.g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d3ab/7810326/4eb85694179f/pone.0245264.g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d3ab/7810326/a391d02fb80e/pone.0245264.g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d3ab/7810326/423d61206022/pone.0245264.g007.jpg

相似文献

[1]
Enhancing web search result clustering model based on multiview multirepresentation consensus cluster ensemble (mmcc) approach.

PLoS One. 2021-1-15

[2]
VH: View Variation and View Heredity for Incomplete Multiview Clustering.

IEEE Trans Artif Intell. 2021-1-18

[3]
Consensus Kernel -Means Clustering for Incomplete Multiview Data.

Comput Intell Neurosci. 2017-10-22

[4]
Partition level multiview subspace clustering.

Neural Netw. 2019-11-6

[5]
Cross-View Representation Learning-Based Deep Multiview Clustering With Adaptive Graph Constraint.

IEEE Trans Neural Netw Learn Syst. 2024-9-4

[6]
Multiple view clustering using a weighted combination of exemplar-based mixture models.

IEEE Trans Neural Netw. 2010-12

[7]
Clustering Ensemble Based on Hybrid Multiview Clustering.

IEEE Trans Cybern. 2022-7

[8]
Multiview Consensus Structure Discovery.

IEEE Trans Cybern. 2022-5

[9]
Incomplete Multiview Clustering via Late Fusion.

Comput Intell Neurosci. 2018-10-1

[10]
Marginalized Multiview Ensemble Clustering.

IEEE Trans Neural Netw Learn Syst. 2020-2

引用本文的文献

[1]
Crosstalk of lactate metabolism-related subtypes, establishment of a prognostic signature and immune infiltration characteristics in colon adenocarcinoma.

Sci Rep. 2025-4-26

[2]
A novel machine learning-driven immunogenic cell death signature for predicting ovarian cancer prognosis.

Transl Cancer Res. 2025-2-28

[3]
The interplay between angiogenesis-associated genes and molecular, clinical, and immune features in bladder cancer.

Discov Oncol. 2025-3-5

[4]
Mechanistic insights into PROS1 inhibition of bladder cancer progression and angiogenesis via the AKT/GSK3β/β-catenin pathway.

Sci Rep. 2025-2-8

[5]
The complement C3a/C3aR pathway is associated with treatment resistance to gemcitabine-based neoadjuvant therapy in pancreatic cancer.

Comput Struct Biotechnol J. 2024-10-5

[6]
Vasculogenic mimicry-related gene prognostic index for predicting prognosis, immune microenvironment in clear cell renal cell carcinoma.

Heliyon. 2024-8-14

[7]
A multi-view representation technique based on principal component analysis for enhanced short text clustering.

PLoS One. 2024

[8]
A novel angiogenesis-associated risk score predicts prognosis and characterizes the tumor microenvironment in colon cancer.

Transl Cancer Res. 2024-5-31

[9]
Identification of an angiogenesis-related risk score model for survival prediction and immunosubtype screening in multiple myeloma.

Aging (Albany NY). 2024-2-5

[10]
Machine learning-derived identification of prognostic signature for improving prognosis and drug response in patients with ovarian cancer.

J Cell Mol Med. 2024-1

本文引用的文献

[1]
Multi-View Cluster Analysis with Incomplete Data to Understand Treatment Effects.

Inf Sci (N Y). 2019-8

[2]
BioWordVec, improving biomedical word embeddings with subword information and MeSH.

Sci Data. 2019-5-10

[3]
EDISON-WMW: Exact Dynamic Programing Solution of the Wilcoxon-Mann-Whitney Test.

Genomics Proteomics Bioinformatics. 2016-2

[4]
Locally Embedding Autoencoders: A Semi-Supervised Manifold Learning Approach of Document Representation.

PLoS One. 2016-1-19

[5]
Paradigm of tunable clustering using Binarization of Consensus Partition Matrices (Bi-CoPaM) for gene discovery.

PLoS One. 2013-2-11

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索