Suppr超能文献

用于理解治疗效果的具有不完整数据的多视图聚类分析。

Multi-View Cluster Analysis with Incomplete Data to Understand Treatment Effects.

作者信息

Chao Guoqing, Sun Jiangwen, Lu Jin, Wang An-Li, Langleben Daniel D, Li Chiang-Shan, Bi Jinbo

机构信息

Department of Computer Science and Engineering, University of Connecticut, Storrs, CT, USA.

Department of Computer Science Old Dominion University, Norfolk, Virginia, USA.

出版信息

Inf Sci (N Y). 2019 Aug;494:278-293. doi: 10.1016/j.ins.2019.04.039. Epub 2019 Apr 22.

Abstract

Multi-view cluster analysis, as a popular granular computing method, aims to partition sample subjects into consistent clusters across different views in which the subjects are characterized. Frequently, data entries can be missing from some of the views. The latest multi-view co-clustering methods cannot effectively deal with incomplete data, especially when there are mixed patterns of missing values. We propose an enhanced formulation for a family of multi-view co-clustering methods to cope with the missing data problem by introducing an indicator matrix whose elements indicate which data entries are observed and assessing cluster validity only on observed entries. In comparison with the simple strategy of removing subjects with missing values, our approach can use all available data in cluster analysis. In comparison with common methods that impute missing data in order to use regular multi-view analytics, our approach is less sensitive to imputation uncertainty. In comparison with other state-of-the-art multi-view incomplete clustering methods, our approach is sensible in the cases of missing any value in a view or missing the entire view, the most common scenario in practice. We first validated the proposed strategy in simulations, and then applied it to a treatment study of heroin dependence which would have been impossible with previous methods due to a number of missing-data patterns. Patients in a treatment study were naturally assessed in different feature spaces such as in the pre-, during-and post-treatment time windows. Our algorithm was able to identify subgroups where patients in each group showed similarities in all of the three time windows, thus leading to the recognition of pre-treatment (baseline) features predictive of post-treatment outcomes.

摘要

多视图聚类分析作为一种流行的粒度计算方法,旨在将样本主体划分为不同视图下一致的聚类,在这些视图中主体被特征化。通常,某些视图中的数据条目可能会缺失。最新的多视图协同聚类方法无法有效处理不完整数据,尤其是当存在混合缺失值模式时。我们为一类多视图协同聚类方法提出了一种增强公式,通过引入一个指标矩阵来处理缺失数据问题,该矩阵的元素表示哪些数据条目是被观测到的,并且仅对观测到的条目评估聚类有效性。与删除具有缺失值的主体的简单策略相比,我们的方法可以在聚类分析中使用所有可用数据。与为了使用常规多视图分析而插补缺失数据的常用方法相比,我们的方法对插补不确定性不太敏感。与其他最先进的多视图不完整聚类方法相比,在视图中缺失任何值或缺失整个视图(实际中最常见的情况)的情况下,我们的方法是合理的。我们首先在模拟中验证了所提出的策略,然后将其应用于一项海洛因依赖治疗研究,由于存在多种缺失数据模式,以前的方法无法进行该研究。在一项治疗研究中,患者在不同的特征空间中自然地接受评估,例如在治疗前、治疗期间和治疗后的时间窗口。我们的算法能够识别亚组,其中每组患者在所有三个时间窗口中都表现出相似性,从而识别出预测治疗后结果的治疗前(基线)特征。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a7ef/7455020/954ac369a730/nihms-1528584-f0001.jpg

相似文献

2
Balance guided incomplete multi-view spectral clustering.平衡引导的不完全多视图谱聚类。
Neural Netw. 2023 Sep;166:260-272. doi: 10.1016/j.neunet.2023.07.022. Epub 2023 Jul 20.
3
Consensus guided incomplete multi-view spectral clustering.共识指导的不完全多视图谱聚类。
Neural Netw. 2021 Jan;133:207-219. doi: 10.1016/j.neunet.2020.10.014. Epub 2020 Nov 11.
5
Multi-View Learning With Incomplete Views.多视角学习与不完全视角。
IEEE Trans Image Process. 2015 Dec;24(12):5812-25. doi: 10.1109/TIP.2015.2490539. Epub 2015 Oct 13.
6
High-Order Correlation Preserved Incomplete Multi-View Subspace Clustering.高阶相关性保持的不完全多视图子空间聚类
IEEE Trans Image Process. 2022;31:2067-2080. doi: 10.1109/TIP.2022.3147046. Epub 2022 Feb 25.
7
VIGAN: Missing View Imputation with Generative Adversarial Networks.VIGAN:使用生成对抗网络进行缺失视图插补
Proc IEEE Int Conf Big Data. 2017;2017:766-775. doi: 10.1109/BigData.2017.8257992. Epub 2018 Jan 15.
8
Multi-view clustering on data with partial instances and clusters.具有部分实例和聚类的数据的多视图聚类。
Neural Netw. 2020 Sep;129:19-30. doi: 10.1016/j.neunet.2020.05.021. Epub 2020 May 22.
10
Late Fusion Incomplete Multi-View Clustering.晚期融合不完全多视图聚类
IEEE Trans Pattern Anal Mach Intell. 2019 Oct;41(10):2410-2423. doi: 10.1109/TPAMI.2018.2879108. Epub 2018 Nov 1.

引用本文的文献

1
VH: View Variation and View Heredity for Incomplete Multiview Clustering.VH:用于不完全多视图聚类的视图变化与视图遗传
IEEE Trans Artif Intell. 2021 Jan 18;1(3):233-247. doi: 10.1109/TAI.2021.3052425. eCollection 2020 Dec.
2
A Survey on Multi-View Clustering.多视图聚类综述
IEEE Trans Artif Intell. 2021 Apr;2(2):146-168. doi: 10.1109/tai.2021.3065894. Epub 2021 Apr 5.

本文引用的文献

3
Alternative Multiview Maximum Entropy Discrimination.多视角最大熵判别法的替代方法
IEEE Trans Neural Netw Learn Syst. 2016 Jul;27(7):1445-56. doi: 10.1109/TNNLS.2015.2442256. Epub 2015 Jun 22.
6
Bi-level multi-source learning for heterogeneous block-wise missing data.用于异质分块缺失数据的双层多源学习。
Neuroimage. 2014 Nov 15;102 Pt 1:192-206. doi: 10.1016/j.neuroimage.2013.08.015. Epub 2013 Aug 27.
7
Granular computing: perspectives and challenges.粒计算:观点与挑战。
IEEE Trans Cybern. 2013 Dec;43(6):1977-89. doi: 10.1109/TSMCC.2012.2236648.
10
Missing data methods in longitudinal studies: a review.纵向研究中的缺失数据方法:综述
Test (Madr). 2009 May 1;18(1):1-43. doi: 10.1007/s11749-009-0138-x.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验