Suppr超能文献

使用深度学习预测最终卒中梗死的再灌注状态的影响。

Impact of the reperfusion status for predicting the final stroke infarct using deep learning.

机构信息

CREATIS, CNRS, UMR-5220, INSERM U1206, Université Lyon 1, INSA Lyon, Villeurbanne, France.

CREATIS, CNRS, UMR-5220, INSERM U1206, Université Lyon 1, INSA Lyon, Villeurbanne, France; Department of Vascular Neurology, Hospices Civils de Lyon, Lyon, France.

出版信息

Neuroimage Clin. 2021;29:102548. doi: 10.1016/j.nicl.2020.102548. Epub 2020 Dec 25.

Abstract

BACKGROUND

Predictive maps of the final infarct may help therapeutic decisions in acute ischemic stroke patients. Our objectives were to assess whether integrating the reperfusion status into deep learning models would improve their performance, and to compare them to current clinical prediction methods.

METHODS

We trained and tested convolutional neural networks (CNNs) to predict the final infarct in acute ischemic stroke patients treated by thrombectomy in our center. When training the CNNs, non-reperfused patients from a non-thrombectomized cohort were added to the training set to increase the size of this group. Baseline diffusion and perfusion-weighted magnetic resonance imaging (MRI) were used as inputs, and the lesion segmented on day-6 MRI served as the ground truth for the final infarct. The cohort was dichotomized into two subsets, reperfused and non-reperfused patients, from which reperfusion status specific CNNs were developed and compared to one another, and to the clinically-used perfusion-diffusion mismatch model. Evaluation metrics included the Dice similarity coefficient (DSC), precision, recall, volumetric similarity, Hausdorff distance and area-under-the-curve (AUC).

RESULTS

We analyzed 109 patients, including 35 without reperfusion. The highest DSC were achieved in both reperfused and non-reperfused patients (DSC = 0.44 ± 0.25 and 0.47 ± 0.17, respectively) when using the corresponding reperfusion status-specific CNN. CNN-based models achieved higher DSC and AUC values compared to those of perfusion-diffusion mismatch models (reperfused patients: AUC = 0.87 ± 0.13 vs 0.79 ± 0.17, P < 0.001; non-reperfused patients: AUC = 0.81 ± 0.13 vs 0.73 ± 0.14, P < 0.01, in CNN vs perfusion-diffusion mismatch models, respectively).

CONCLUSION

The performance of deep learning models improved when the reperfusion status was incorporated in their training. CNN-based models outperformed the clinically-used perfusion-diffusion mismatch model. Comparing the predicted infarct in case of successful vs failed reperfusion may help in estimating the treatment effect and guiding therapeutic decisions in selected patients.

摘要

背景

最终梗死的预测图可能有助于急性缺血性脑卒中患者的治疗决策。我们的目的是评估将再灌注状态整合到深度学习模型中是否会提高其性能,并将其与当前的临床预测方法进行比较。

方法

我们训练和测试了卷积神经网络(CNN),以预测在我们中心接受血栓切除术治疗的急性缺血性脑卒中患者的最终梗死。在训练 CNN 时,将非溶栓队列中的非再灌注患者添加到训练集中,以增加该组的大小。基线弥散和灌注加权磁共振成像(MRI)被用作输入,第 6 天 MRI 上的病变分割被用作最终梗死的真实值。该队列被分为再灌注和非再灌注患者两个子集,从这些子集开发了再灌注状态特异性 CNN,并将其彼此进行比较,并与临床使用的灌注-弥散不匹配模型进行比较。评估指标包括 Dice 相似系数(DSC)、精度、召回率、体积相似性、Hausdorff 距离和曲线下面积(AUC)。

结果

我们分析了 109 例患者,其中 35 例患者无再灌注。当使用相应的再灌注状态特异性 CNN 时,再灌注和非再灌注患者的 DSC 最高(DSC = 0.44 ± 0.25 和 0.47 ± 0.17)。基于 CNN 的模型与灌注-弥散不匹配模型相比,DSC 和 AUC 值更高(再灌注患者:AUC = 0.87 ± 0.13 比 0.79 ± 0.17,P < 0.001;非再灌注患者:AUC = 0.81 ± 0.13 比 0.73 ± 0.14,P < 0.01,在 CNN 与灌注-弥散不匹配模型之间)。

结论

当再灌注状态被纳入其训练中时,深度学习模型的性能得到了提高。基于 CNN 的模型优于临床使用的灌注-弥散不匹配模型。比较成功再灌注与失败再灌注情况下的预测梗死可能有助于评估治疗效果,并指导选定患者的治疗决策。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/534b/7810765/c061b46724d0/ga1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验