Suppr超能文献

利用逻辑模型预测近端血管闭塞和机械血栓切除术患者的组织结局。

Tissue Outcome Prediction in Patients with Proximal Vessel Occlusion and Mechanical Thrombectomy Using Logistic Models.

机构信息

Neuroimaging Laboratory, Department of Neurology, University of Leipzig Medical Center, Leipzig, Germany.

Signal and Image Processing Group, Institute for Informatics, University of Leipzig, Leipzig, Germany.

出版信息

Transl Stroke Res. 2024 Aug;15(4):739-749. doi: 10.1007/s12975-023-01160-6. Epub 2023 May 30.

Abstract

Perfusion CT is established to aid selection of patients with proximal intracranial vessel occlusion for thrombectomy in the extended time window. Selection is mostly based on simple thresholding of perfusion parameter maps, which, however, does not exploit the full information hidden in the high-dimensional perfusion data. We implemented a multiparametric mass-univariate logistic model to predict tissue outcome based on data from 405 stroke patients with acute proximal vessel occlusion in the anterior circulation who underwent mechanical thrombectomy. Input parameters were acute multimodal CT imaging (perfusion, angiography, and non-contrast) as well as basic demographic and clinical parameters. The model was trained with the knowledge of recanalization status and final infarct localization. We found that perfusion parameter maps (CBF, CBV, and T) were sufficient for tissue outcome prediction. Compared with single-parameter thresholding-based models, our logistic model had comparable volumetric accuracy, but was superior with respect to topographical accuracy (AUC of receiver operating characteristic). We also found higher spatial accuracy (Dice index) in an independent internal but not external cross-validation. Our results highlight the value of perfusion data compared with non-contrast CT, CT angiography and clinical information for tissue outcome-prediction. Multiparametric logistic prediction has high potential to outperform the single-parameter thresholding-based approach. In the future, the combination of tissue and functional outcome prediction might provide an individual biomarker for the benefit from mechanical thrombectomy in acute stroke care.

摘要

灌注 CT 的建立旨在帮助选择近端颅内血管闭塞的患者进行延长时间窗内的血栓切除术。选择主要基于灌注参数图的简单阈值,然而,这并没有利用隐藏在高维灌注数据中的全部信息。我们实施了一种多参数单变量逻辑模型,基于 405 例接受机械血栓切除术的急性前循环近端血管闭塞的中风患者的数据,预测组织转归。输入参数为急性多模态 CT 成像(灌注、血管造影和非对比)以及基本的人口统计学和临床参数。该模型是根据再通状态和最终梗死定位的知识进行训练的。我们发现灌注参数图(CBF、CBV 和 T)足以预测组织转归。与基于单参数阈值的模型相比,我们的逻辑模型具有相似的体积准确性,但在地形准确性(接受者操作特征的 AUC)方面更具优势。我们还发现,在独立的内部但不是外部交叉验证中,空间准确性(Dice 指数)更高。我们的结果强调了与非对比 CT、CT 血管造影和临床信息相比,灌注数据在预测组织转归方面的价值。多参数逻辑预测有很高的潜力超过基于单参数阈值的方法。在未来,组织和功能转归预测的结合可能为急性中风治疗中机械血栓切除术的获益提供个体生物标志物。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验