Sahoo Prasan Kumar, Mohapatra Sulagna, Wu Ching-Yi, Huang Kuo-Lun, Chang Ting-Yu, Lee Tsong-Hai
Department of Computer Science and Information Engineering, Chang Gung University, Taoyuan, Taiwan.
Department of Neurology, Chang Gung Memorial Hospital, Linkou Medical Center, No. 5, Fu-Hsing Street, Guishan, Taoyuan, 333, Taiwan.
Sci Rep. 2022 Oct 27;12(1):18054. doi: 10.1038/s41598-022-22939-x.
Early ischemic lesion on non-contrast computed tomogram (NCCT) in acute stroke can be subtle and need confirmation with magnetic resonance (MR) image for treatment decision-making. We retrospectively included the NCCT slices of 129 normal subjects and 546 ischemic stroke patients (onset < 12 h) with corresponding MR slices as reference standard from a prospective registry of Chang Gung Research Databank. In model selection, NCCT slices were preprocessed and fed into five different pre-trained convolutional neural network (CNN) models including Visual Geometry Group 16 (VGG16), Residual Networks 50, Inception-ResNet-v2, Inception-v3, and Inception-v4. In model derivation, the customized-VGG16 model could achieve an accuracy of 0.83, sensitivity 0.85, F-score 0.80, specificity 0.82, and AP 0.82 after using a tenfold cross-validation method, outperforming the pre-trained VGG16 model. In model evaluation, the customized-VGG16 model could correctly identify 53 in 58 subjects (91.37%) including 29 ischemic stroke patients and 24 normal subjects and reached the sensitivity of 86.95% in identifying ischemic NCCT slices (200/230), irrespective of supratentorial or infratentorial lesions. The customized-VGG16 CNN model can successfully identify the presence of early ischemic lesions on NCCT slices using the concept of automatic feature learning. Further study will be proceeded to detect the location of ischemic lesion.
急性卒中非增强计算机断层扫描(NCCT)上的早期缺血性病变可能不明显,需要磁共振(MR)图像进行确认,以辅助治疗决策。我们回顾性纳入了129名正常受试者和546名缺血性卒中患者(发病时间<12小时)的NCCT切片,并以前瞻性长庚研究数据库中的相应MR切片作为参考标准。在模型选择过程中,对NCCT切片进行预处理,并将其输入五个不同的预训练卷积神经网络(CNN)模型,包括视觉几何组16(VGG16)、残差网络50、Inception-ResNet-v2、Inception-v3和Inception-v4。在模型推导中,定制的VGG16模型在使用十倍交叉验证方法后,准确率达到0.83,灵敏度为0.85,F值为0.80,特异性为0.82,平均精度为0.82,优于预训练的VGG16模型。在模型评估中,定制的VGG16模型能够在58名受试者(包括29名缺血性卒中患者和24名正常受试者)中正确识别出53名(91.37%),在识别缺血性NCCT切片(200/230)时,无论幕上或幕下病变,灵敏度均达到86.95%。定制的VGG16 CNN模型能够利用自动特征学习的概念成功识别NCCT切片上早期缺血性病变的存在。后续将进一步研究以检测缺血性病变的位置。