Suppr超能文献

基于 CRISPR/Cas9 的同源非依赖型工具在解脂耶氏酵母中靶向基因组整合的开发。

A CRISPR/Cas9-Mediated, Homology-Independent Tool Developed for Targeted Genome Integration in Yarrowia lipolytica.

机构信息

State Key Laboratory of Microbial Technology, Shandong University, Qingdao, People's Republic of China.

State Key Laboratory of Microbial Technology, Shandong University, Qingdao, People's Republic of China

出版信息

Appl Environ Microbiol. 2021 Feb 26;87(6). doi: 10.1128/AEM.02666-20.

Abstract

has been extensively used to produce essential chemicals and enzymes. As in most other eukaryotes, nonhomologous end joining (NHEJ) is the major repair pathway for DNA double-strand breaks in Although numerous studies have attempted to achieve targeted genome integration through homologous recombination (HR), this process requires the construction of homologous arms, which is time-consuming. This study aimed to develop a homology-independent and CRISPR/Cas9-mediated targeted genome integration tool in Through optimization of the cleavage efficiency of Cas9, targeted integration of a fragment was achieved with 12.9% efficiency, which was further improved by manipulation of the fidelity of NHEJ repair, the cell cycle, and the integration sites. Thus, the targeted integration rate reached 55% through G phase synchronization. This tool was successfully applied for the rapid verification of intronic promoters and iterative integration of four genes in the pathway for canthaxanthin biosynthesis. This homology-independent integration tool does not require homologous templates and selection markers and achieves one-step targeted genome integration of the 8,417-bp DNA fragment, potentially replacing current HR-dependent genome-editing methods for This study describes the development and optimization of a homology-independent targeted genome integration tool mediated by CRISPR/Cas9 in This tool does not require the construction of homologous templates and can be used to rapidly verify genetic elements and to iteratively integrate multiple-gene pathways in This tool may serve as a potential supplement to current HR-dependent genome-editing methods for eukaryotes.

摘要

已被广泛用于生产重要的化学物质和酶。与大多数其他真核生物一样,非同源末端连接(NHEJ)是 中 DNA 双链断裂的主要修复途径。尽管许多研究试图通过同源重组(HR)实现靶向基因组整合,但该过程需要构建同源臂,这是一个耗时的过程。本研究旨在开发一种不依赖同源性和 CRISPR/Cas9 介导的靶向基因组整合工具在 中。通过优化 Cas9 的切割效率,实现了 片段的靶向整合,效率为 12.9%,通过操纵 NHEJ 修复、细胞周期和整合位点的保真度进一步提高。因此,通过 G 期同步,靶向整合率达到 55%。该工具成功应用于快速验证内含子启动子和四基因在虾青素生物合成途径中的迭代整合。这种不依赖同源性的整合工具不需要同源模板和选择标记,可实现一步靶向基因组整合 8417bp DNA 片段,可能取代当前依赖 HR 的基因组编辑方法在 中。本研究描述了在 中由 CRISPR/Cas9 介导的不依赖同源性的靶向基因组整合工具的开发和优化。该工具不需要构建同源模板,可用于快速验证遗传元件,并在 中迭代整合多个基因途径。该工具可能成为当前依赖 HR 的真核生物基因组编辑方法的潜在补充。

相似文献

2
Multiplex gene editing of the Yarrowia lipolytica genome using the CRISPR-Cas9 system.
J Ind Microbiol Biotechnol. 2016 Aug;43(8):1085-93. doi: 10.1007/s10295-016-1789-8. Epub 2016 Jun 27.
3
Dual CRISPR-Cas9 Cleavage Mediated Gene Excision and Targeted Integration in Yarrowia lipolytica.
Biotechnol J. 2018 Sep;13(9):e1700590. doi: 10.1002/biot.201700590. Epub 2018 Jun 11.
4
Synthetic RNA Polymerase III Promoters Facilitate High-Efficiency CRISPR-Cas9-Mediated Genome Editing in Yarrowia lipolytica.
ACS Synth Biol. 2016 Apr 15;5(4):356-9. doi: 10.1021/acssynbio.5b00162. Epub 2016 Jan 7.
6
CRISPR-Cas9-Mediated Genome Editing and Transcriptional Control in Yarrowia lipolytica.
Methods Mol Biol. 2018;1772:327-345. doi: 10.1007/978-1-4939-7795-6_18.
7
8
Improving CRISPR/Cas9-mediated genome editing efficiency in Yarrowia lipolytica using direct tRNA-sgRNA fusions.
Metab Eng. 2020 Nov;62:106-115. doi: 10.1016/j.ymben.2020.07.008. Epub 2020 Aug 3.
9
Characterization of an efficient CRISPR-iCas9 system in Yarrowia lipolytica for the biosynthesis of carotenoids.
Appl Microbiol Biotechnol. 2023 Oct;107(20):6299-6313. doi: 10.1007/s00253-023-12731-w. Epub 2023 Aug 29.
10
Implementing CRISPR-Cas12a for Efficient Genome Editing in Yarrowia lipolytica.
Methods Mol Biol. 2021;2307:111-121. doi: 10.1007/978-1-0716-1414-3_7.

引用本文的文献

1
Unlocking the Synthetic Potential of Yarrowia lipolytica: Innovating Gene Expression Tools.
Microb Biotechnol. 2025 Aug;18(8):e70185. doi: 10.1111/1751-7915.70185.
2
The roles of NHEJ and TLS pathways in genomic alterations and phenotypic evolution in the yeast Yarrowia lipolytica.
Appl Microbiol Biotechnol. 2025 Aug 15;109(1):183. doi: 10.1007/s00253-025-13575-2.
4
Genomic characteristics and genetic manipulation of the marine yeast Scheffersomyces spartinae.
Appl Microbiol Biotechnol. 2024 Dec 19;108(1):539. doi: 10.1007/s00253-024-13382-1.
5
Progress in the Metabolic Engineering of for the Synthesis of Terpenes.
Biodes Res. 2024 Nov 12;6:0051. doi: 10.34133/bdr.0051. eCollection 2024.
6
Advances and perspectives in genetic expression and operation for the oleaginous yeast .
Synth Syst Biotechnol. 2024 May 10;9(4):618-626. doi: 10.1016/j.synbio.2024.05.003. eCollection 2024 Dec.
7
Genome-scale transcriptional activation by non-homologous end joining-mediated integration in Yarrowia lipolytica.
Biotechnol Biofuels Bioprod. 2024 Feb 15;17(1):24. doi: 10.1186/s13068-024-02472-x.
9
Efficient production of 2'-fucosyllactose in unconventional yeast .
Synth Syst Biotechnol. 2023 Nov 15;8(4):716-723. doi: 10.1016/j.synbio.2023.11.002. eCollection 2023 Dec.

本文引用的文献

1
Chromosome breaks generated by low doses of ionizing radiation in G-phase are processed exclusively by gene conversion.
DNA Repair (Amst). 2020 May;89:102828. doi: 10.1016/j.dnarep.2020.102828. Epub 2020 Feb 27.
2
Fast and efficient generation of knock-in human organoids using homology-independent CRISPR-Cas9 precision genome editing.
Nat Cell Biol. 2020 Mar;22(3):321-331. doi: 10.1038/s41556-020-0472-5. Epub 2020 Mar 2.
3
Engineering the oleaginous yeast for production of α-farnesene.
Biotechnol Biofuels. 2019 Dec 23;12:296. doi: 10.1186/s13068-019-1636-z. eCollection 2019.
4
CRISPR-Cas12a/Cpf1-assisted precise, efficient and multiplexed genome-editing in .
Metab Eng Commun. 2019 Nov 22;10:e00112. doi: 10.1016/j.mec.2019.e00112. eCollection 2020 Jun.
5
Combining 26s rDNA and the Cre-loxP System for Iterative Gene Integration and Efficient Marker Curation in Yarrowia lipolytica.
ACS Synth Biol. 2019 Mar 15;8(3):568-576. doi: 10.1021/acssynbio.8b00535. Epub 2019 Feb 8.
6
Enhanced itaconic acid production in Yarrowia lipolytica via heterologous expression of a mitochondrial transporter MTT.
Appl Microbiol Biotechnol. 2019 Mar;103(5):2181-2192. doi: 10.1007/s00253-019-09627-z. Epub 2019 Jan 18.
7
The metabolism and genetic regulation of lipids in the oleaginous yeast Yarrowia lipolytica.
Braz J Microbiol. 2019 Jan;50(1):23-31. doi: 10.1007/s42770-018-0004-7. Epub 2018 Nov 29.
9
DYNLL1 binds to MRE11 to limit DNA end resection in BRCA1-deficient cells.
Nature. 2018 Nov;563(7732):522-526. doi: 10.1038/s41586-018-0670-5. Epub 2018 Oct 31.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验