Suppr超能文献

通过解脂耶氏酵母中的同源重组,利用CRISPRi抑制非同源末端连接以增强基因组工程

CRISPRi repression of nonhomologous end-joining for enhanced genome engineering via homologous recombination in Yarrowia lipolytica.

作者信息

Schwartz Cory, Frogue Keith, Ramesh Adithya, Misa Joshua, Wheeldon Ian

机构信息

Chemical and Environmental Engineering, University of California Riverside, Riverside, California.

出版信息

Biotechnol Bioeng. 2017 Dec;114(12):2896-2906. doi: 10.1002/bit.26404. Epub 2017 Sep 4.

Abstract

In many organisms of biotechnological importance precise genome editing is limited by inherently low homologous recombination (HR) efficiencies. A number of strategies exist to increase the effectiveness of this native DNA repair pathway; however, most strategies rely on permanently disabling competing repair pathways, thus reducing an organism's capacity to repair naturally occurring double strand breaks. Here, we describe a CRISPR interference (CRISPRi) system for gene repression in the oleochemical-producing yeast Yarrowia lipolytica. By using a multiplexed sgRNA targeting strategy, we demonstrate efficient repression of eight out of nine targeted genes to enhance HR. Strains with nonhomologous end-joining repressed were shown to have increased rates of HR when transformed with a linear DNA fragment with homology to a genomic locus. With multiplexed targeting of KU70 and KU80, and enhanced repression with Mxi1 fused to deactivated Cas9 (dCas9), rates of HR as high as 90% were achieved. The developed CRISPRi system enables enhanced HR in Y. lipolytica without permanent genetic knockouts and promises to be a potent tool for other metabolic engineering, synthetic biology, and functional genomics studies.

摘要

在许多具有生物技术重要性的生物体中,精确的基因组编辑受到固有低同源重组(HR)效率的限制。存在多种提高这种天然DNA修复途径有效性的策略;然而,大多数策略依赖于永久禁用竞争性修复途径,从而降低生物体修复自然发生的双链断裂的能力。在此,我们描述了一种用于在产油脂酵母解脂耶氏酵母中进行基因抑制的CRISPR干扰(CRISPRi)系统。通过使用多重sgRNA靶向策略,我们证明了九个靶向基因中有八个被有效抑制以增强同源重组。当用与基因组位点具有同源性的线性DNA片段转化时,显示非同源末端连接被抑制的菌株具有更高的同源重组率。通过对KU70和KU80进行多重靶向,并使用与失活的Cas9(dCas9)融合的Mxi1增强抑制作用,同源重组率高达90%。所开发的CRISPRi系统能够在解脂耶氏酵母中增强同源重组,而无需进行永久性基因敲除,并有望成为其他代谢工程、合成生物学和功能基因组学研究的有力工具。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验