Suppr超能文献

利用机械生物学进行组织工程。

Harnessing Mechanobiology for Tissue Engineering.

机构信息

Department of Biomedical Engineering and the Biological Design Center, Boston University, Boston, MA 02215, USA; The Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA 02115, USA.

Department of Biomedical Engineering and the Biological Design Center, Boston University, Boston, MA 02215, USA; The Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA 02115, USA.

出版信息

Dev Cell. 2021 Jan 25;56(2):180-191. doi: 10.1016/j.devcel.2020.12.017. Epub 2021 Jan 15.

Abstract

A primary challenge in tissue engineering is to recapitulate both the structural and functional features of whole tissues and organs. In vivo, patterning of the body plan and constituent tissues emerges from the carefully orchestrated interactions between the transcriptional programs that give rise to cell types and the mechanical forces that drive the bending, twisting, and extensions critical to morphogenesis. Substantial recent progress in mechanobiology-understanding how mechanics regulate cell behaviors and what cellular machineries are responsible-raises the possibility that one can begin to use these insights to help guide the strategy and design of functional engineered tissues. In this perspective, we review and propose the development of different approaches, from providing appropriate extracellular mechanical cues to interfering with cellular mechanosensing machinery, to aid in controlling cell and tissue structure and function.

摘要

组织工程面临的一个主要挑战是重现整个组织和器官的结构和功能特征。在体内,体形规划和组成组织的模式形成源于导致细胞类型的转录程序与驱动对形态发生至关重要的弯曲、扭曲和伸展的机械力之间的精心协调的相互作用。机械生物学方面的重大进展——理解力学如何调节细胞行为以及哪些细胞机制负责——使得人们有可能开始利用这些见解来帮助指导功能性工程组织的策略和设计。在这个观点中,我们回顾并提出了不同方法的发展,从提供适当的细胞外机械线索到干扰细胞的机械感觉机制,以帮助控制细胞和组织的结构和功能。

相似文献

1
Harnessing Mechanobiology for Tissue Engineering.
Dev Cell. 2021 Jan 25;56(2):180-191. doi: 10.1016/j.devcel.2020.12.017. Epub 2021 Jan 15.
2
Mechanics of Development.
Dev Cell. 2021 Jan 25;56(2):240-250. doi: 10.1016/j.devcel.2020.11.025. Epub 2020 Dec 14.
3
The role of cell-matrix interactions in connective tissue mechanics.
Phys Biol. 2022 Jan 18;19(2). doi: 10.1088/1478-3975/ac42b8.
4
Imaging methods in mechanosensing: a historical perspective and visions for the future.
Mol Biol Cell. 2021 Apr 19;32(9):842-854. doi: 10.1091/mbc.E20-10-0671. Epub 2021 Mar 31.
5
Translational mechanobiology: Designing synthetic hydrogel matrices for improved in vitro models and cell-based therapies.
Acta Biomater. 2019 Aug;94:97-111. doi: 10.1016/j.actbio.2019.05.055. Epub 2019 May 24.
6
Mechanobiology of neural development.
Curr Opin Cell Biol. 2020 Oct;66:104-111. doi: 10.1016/j.ceb.2020.05.012. Epub 2020 Jul 17.
7
Mechanical control of tissue morphogenesis.
Circ Res. 2008 Aug 1;103(3):234-43. doi: 10.1161/CIRCRESAHA.108.175331.
8
Emergent mechanical control of vascular morphogenesis.
Sci Adv. 2023 Aug 11;9(32):eadg9781. doi: 10.1126/sciadv.adg9781.
9
Extracellular matrix mechanobiology in cancer cell migration.
Acta Biomater. 2023 Jun;163:351-364. doi: 10.1016/j.actbio.2022.10.016. Epub 2022 Oct 13.
10
Generation, Transmission, and Regulation of Mechanical Forces in Embryonic Morphogenesis.
Small. 2022 Feb;18(6):e2103466. doi: 10.1002/smll.202103466. Epub 2021 Nov 26.

引用本文的文献

1
Biohybrid corneal stromal tissue formation using keratocytes encapsulated in supramolecular microgels.
Mater Today Bio. 2025 Aug 16;34:102214. doi: 10.1016/j.mtbio.2025.102214. eCollection 2025 Oct.
2
Mechanobiology in Action: Biomaterials, Devices, and the Cellular Machinery of Force Sensing.
Biomolecules. 2025 Jun 10;15(6):848. doi: 10.3390/biom15060848.
3
Differentiation potential of periodontal Col1 cells under orthodontic force.
Mechanobiol Med. 2023 Oct 29;2(1):100026. doi: 10.1016/j.mbm.2023.100026. eCollection 2024 Mar.
4
PIEZO1-mediated calcium signaling reinforces mechanical properties of hair follicle stem cells to promote quiescence.
Sci Adv. 2025 May 30;11(22):eadt2771. doi: 10.1126/sciadv.adt2771. Epub 2025 May 28.
5
Softness or Stiffness What Contributes to Cancer and Cancer Metastasis?
Cells. 2025 Apr 12;14(8):584. doi: 10.3390/cells14080584.
8
Impact of compression forces on different mesenchymal stem cell types regarding orthodontic indication.
Stem Cells Transl Med. 2024 Oct 10;13(10):1028-1039. doi: 10.1093/stcltm/szae057.
9
Mechanobiology in Metabolic Dysfunction-Associated Steatotic Liver Disease and Obesity.
Curr Issues Mol Biol. 2024 Jul 7;46(7):7134-7146. doi: 10.3390/cimb46070425.
10
The Plasma Membrane and Mechanoregulation in Cells.
ACS Omega. 2024 May 13;9(20):21780-21797. doi: 10.1021/acsomega.4c01962. eCollection 2024 May 21.

本文引用的文献

1
Mechanical compartmentalization of the intestinal organoid enables crypt folding and collective cell migration.
Nat Cell Biol. 2021 Jul;23(7):745-757. doi: 10.1038/s41556-021-00699-6. Epub 2021 Jun 21.
2
An optogenetic method for interrogating YAP1 and TAZ nuclear-cytoplasmic shuttling.
J Cell Sci. 2021 Jul 1;134(13). doi: 10.1242/jcs.253484. Epub 2021 Jul 9.
3
Controlled Apoptosis of Stromal Cells to Engineer Human Microlivers.
Adv Funct Mater. 2020 Nov 25;30(48). doi: 10.1002/adfm.201910442. Epub 2020 Jun 8.
4
Transient Support from Fibroblasts is Sufficient to Drive Functional Vascularization in Engineered Tissues.
Adv Funct Mater. 2020 Nov 25;30(48). doi: 10.1002/adfm.202003777. Epub 2020 Jun 25.
5
Recapitulating macro-scale tissue self-organization through organoid bioprinting.
Nat Mater. 2021 Jan;20(1):22-29. doi: 10.1038/s41563-020-00803-5. Epub 2020 Sep 21.
6
Homeostatic mini-intestines through scaffold-guided organoid morphogenesis.
Nature. 2020 Sep;585(7826):574-578. doi: 10.1038/s41586-020-2724-8. Epub 2020 Sep 16.
7
Effects of extracellular matrix viscoelasticity on cellular behaviour.
Nature. 2020 Aug;584(7822):535-546. doi: 10.1038/s41586-020-2612-2. Epub 2020 Aug 26.
8
Buckling of an Epithelium Growing under Spherical Confinement.
Dev Cell. 2020 Sep 14;54(5):655-668.e6. doi: 10.1016/j.devcel.2020.07.019. Epub 2020 Aug 14.
9
Generation of model tissues with dendritic vascular networks via sacrificial laser-sintered carbohydrate templates.
Nat Biomed Eng. 2020 Sep;4(9):916-932. doi: 10.1038/s41551-020-0566-1. Epub 2020 Jun 29.
10
Guiding Cell Network Assembly using Shape-Morphing Hydrogels.
Adv Mater. 2020 Aug;32(31):e2002195. doi: 10.1002/adma.202002195. Epub 2020 Jun 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验