Suppr超能文献

神经发育的力学生物学。

Mechanobiology of neural development.

机构信息

Department of Physiology & Biophysics, UC Irvine, Irvine, CA, USA; Sue and Bill Gross Stem Cell Research Center, UC Irvine, Irvine, CA, USA.

Department of Physiology & Biophysics, UC Irvine, Irvine, CA, USA; Sue and Bill Gross Stem Cell Research Center, UC Irvine, Irvine, CA, USA; Center for Complex Biological Systems, UC Irvine, Irvine, CA, USA; Department of Biomedical Engineering, UC Irvine, Irvine, CA, USA.

出版信息

Curr Opin Cell Biol. 2020 Oct;66:104-111. doi: 10.1016/j.ceb.2020.05.012. Epub 2020 Jul 17.

Abstract

As the brain develops, proliferating cells organize into structures, differentiate, migrate, extrude long processes, and connect with other cells. These biological processes produce mechanical forces that further shape cellular dynamics and organ patterning. A major unanswered question in developmental biology is how the mechanical forces produced during development are detected and transduced by cells to impact biochemical and genetic programs of development. This gap in knowledge stems from a lack of understanding of the molecular players of cellular mechanics and an absence of techniques for measuring and manipulating mechanical forces in tissue. In this review article, we examine recent advances that are beginning to clear these bottlenecks and highlight results from new approaches that reveal the role of mechanical forces in neurodevelopmental processes.

摘要

随着大脑的发育,增殖细胞会组织成结构,分化,迁移,伸出长的突起,并与其他细胞连接。这些生物过程会产生机械力,从而进一步塑造细胞动力学和器官模式。发育生物学中的一个主要未解决的问题是,发育过程中产生的机械力如何被细胞检测和转导,从而影响发育的生化和遗传程序。这种知识上的差距源于对细胞力学的分子参与者的理解不足,以及缺乏测量和操纵组织中机械力的技术。在这篇综述文章中,我们考察了最近的一些进展,这些进展开始清除这些瓶颈,并强调了新方法的结果,这些结果揭示了机械力在神经发育过程中的作用。

相似文献

1
Mechanobiology of neural development.
Curr Opin Cell Biol. 2020 Oct;66:104-111. doi: 10.1016/j.ceb.2020.05.012. Epub 2020 Jul 17.
2
Harnessing Mechanobiology for Tissue Engineering.
Dev Cell. 2021 Jan 25;56(2):180-191. doi: 10.1016/j.devcel.2020.12.017. Epub 2021 Jan 15.
3
Mechanics of Development.
Dev Cell. 2021 Jan 25;56(2):240-250. doi: 10.1016/j.devcel.2020.11.025. Epub 2020 Dec 14.
4
From biomechanics to mechanobiology: Xenopus provides direct access to the physical principles that shape the embryo.
Curr Opin Genet Dev. 2020 Aug;63:71-77. doi: 10.1016/j.gde.2020.05.011. Epub 2020 Jun 18.
5
Generation, Transmission, and Regulation of Mechanical Forces in Embryonic Morphogenesis.
Small. 2022 Feb;18(6):e2103466. doi: 10.1002/smll.202103466. Epub 2021 Nov 26.
6
On growth and force: mechanical forces in development.
Development. 2020 Feb 17;147(4):dev187302. doi: 10.1242/dev.187302.
7
Mechanical control of tissue shape: Cell-extrinsic and -intrinsic mechanisms join forces to regulate morphogenesis.
Semin Cell Dev Biol. 2022 Oct;130:45-55. doi: 10.1016/j.semcdb.2022.03.017. Epub 2022 Mar 30.
8
Biophysical Approaches for Applying and Measuring Biological Forces.
Adv Sci (Weinh). 2022 Feb;9(5):e2105254. doi: 10.1002/advs.202105254. Epub 2021 Dec 19.
9
The role of mechanical forces in plant morphogenesis.
Annu Rev Plant Biol. 2011;62:365-85. doi: 10.1146/annurev-arplant-042110-103852.
10
The mechanobiology of NK cells- 'Forcing NK to Sense' target cells.
Biochim Biophys Acta Rev Cancer. 2023 Mar;1878(2):188860. doi: 10.1016/j.bbcan.2023.188860. Epub 2023 Feb 13.

引用本文的文献

1
DNA methylation in infants with neurodevelopmental disorders.
Front Psychol. 2025 Jul 31;16:1593609. doi: 10.3389/fpsyg.2025.1593609. eCollection 2025.
2
Mechanobiology in cellular, molecular, and tissue adaptation.
Mechanobiol Med. 2023 Aug 24;1(2):100022. doi: 10.1016/j.mbm.2023.100022. eCollection 2023 Dec.
3
Forcing the code: tension modulates signaling to drive morphogenesis and malignancy.
Genes Dev. 2025 Jan 7;39(1-2):163-181. doi: 10.1101/gad.352110.124.
5
Piezo1: the key regulators in central nervous system diseases.
Front Cell Neurosci. 2024 Oct 30;18:1441806. doi: 10.3389/fncel.2024.1441806. eCollection 2024.
8
Mechanically guided cell fate determination in early development.
Cell Mol Life Sci. 2024 May 30;81(1):242. doi: 10.1007/s00018-024-05272-6.
9
Generation of contractile forces by three-dimensional bundled axonal tracts in micro-tissue engineered neural networks.
Front Mol Neurosci. 2024 Mar 25;17:1346696. doi: 10.3389/fnmol.2024.1346696. eCollection 2024.
10
Retina organoids: Window into the biophysics of neuronal systems.
Biophys Rev (Melville). 2022 Jan 18;3(1):011302. doi: 10.1063/5.0077014. eCollection 2022 Mar.

本文引用的文献

1
Defining the Adult Neural Stem Cell Niche Proteome Identifies Key Regulators of Adult Neurogenesis.
Cell Stem Cell. 2020 Feb 6;26(2):277-293.e8. doi: 10.1016/j.stem.2020.01.002.
2
Cell and tissue morphology determine actin-dependent nuclear migration mechanisms in neuroepithelia.
J Cell Biol. 2019 Oct 7;218(10):3272-3289. doi: 10.1083/jcb.201901077. Epub 2019 Aug 16.
3
Niche stiffness underlies the ageing of central nervous system progenitor cells.
Nature. 2019 Sep;573(7772):130-134. doi: 10.1038/s41586-019-1484-9. Epub 2019 Aug 15.
4
Myosin-II mediated traction forces evoke localized Piezo1-dependent Ca flickers.
Commun Biol. 2019 Aug 7;2:298. doi: 10.1038/s42003-019-0514-3. eCollection 2019.
6
Mechanisms of Neural Crest Migration.
Annu Rev Genet. 2018 Nov 23;52:43-63. doi: 10.1146/annurev-genet-120417-031559.
7
Tissue biomechanics during cranial neural tube closure measured by Brillouin microscopy and optical coherence tomography.
Birth Defects Res. 2019 Aug 15;111(14):991-998. doi: 10.1002/bdr2.1389. Epub 2018 Sep 21.
9
Epithelial Sodium Channel Regulates Adult Neural Stem Cell Proliferation in a Flow-Dependent Manner.
Cell Stem Cell. 2018 Jun 1;22(6):865-878.e8. doi: 10.1016/j.stem.2018.04.016. Epub 2018 May 17.
10
Human Brain Organoids on a Chip Reveal the Physics of Folding.
Nat Phys. 2018 May;14(5):515-522. doi: 10.1038/s41567-018-0046-7. Epub 2018 Feb 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验