Wu Dali, Zhang Shunli, Zhao Guohong, Feng Yongchao, Ma Yuan, Zhang Yue
School of Computer and Information Science, Qinghai Institute of Technology, Xining, 810016, China.
Qinghai Provincial Key Laboratory of Big Data in Finance and Artificial Intelligence ApplicationTechnology, Qinghai Institute of Technology, Xining, 810016, China.
Sci Rep. 2025 Aug 5;15(1):28620. doi: 10.1038/s41598-025-12953-0.
Accurate short-term precipitation prediction is critical for agricultural production, transportation safety, and water resource management. In this paper, we propose an Efficient Spatio-Temporal Recurrent Unit (ESTRU) for short-term precipitation prediction based on radar echoes. The ability of the model to process spatio-temporal information is enhanced by fusing two ConvGRU units while controlling the complexity. The trajectory tracking structure (TTS) facilitates the capture of rotational and scaling motions and improves the model's adaptability in complex meteorological conditions. The combined effect of the Self-Attention (SA) mechanism and convolution allows the model to focus on both global and local dependencies in spatial information, improving the clarity of the generated images. ESTRU demonstrated the best performance on the radar echo dataset compared to the other nine classical models. Quantitative and qualitative results show that ESTRU can efficiently model complex spatio-temporal relationships in radar echoes.
准确的短期降水预测对于农业生产、交通安全和水资源管理至关重要。在本文中,我们提出了一种基于雷达回波的用于短期降水预测的高效时空循环单元(ESTRU)。该模型通过融合两个卷积门控循环单元(ConvGRU)来增强处理时空信息的能力,同时控制复杂度。轨迹跟踪结构(TTS)有助于捕捉旋转和缩放运动,并提高模型在复杂气象条件下的适应性。自注意力(SA)机制和卷积的联合作用使模型能够关注空间信息中的全局和局部依赖性,提高生成图像的清晰度。与其他九个经典模型相比,ESTRU在雷达回波数据集上表现出最佳性能。定量和定性结果表明,ESTRU能够有效地对雷达回波中的复杂时空关系进行建模。