GH5_4 内切葡聚糖酶的结构和动力学研究揭示了广泛的底物特异性决定因素和生物质水解的机会。
A structural and kinetic survey of GH5_4 endoglucanases reveals determinants of broad substrate specificity and opportunities for biomass hydrolysis.
机构信息
Department of Biochemistry, University of Wisconsin, Madison, Wisconsin, USA; Great Lakes Bioenergy Research Center, Madison, Wisconsin, USA.
Department of Biochemistry, University of Wisconsin, Madison, Wisconsin, USA.
出版信息
J Biol Chem. 2020 Dec 18;295(51):17752-17769. doi: 10.1074/jbc.RA120.015328.
Broad-specificity glycoside hydrolases (GHs) contribute to plant biomass hydrolysis by degrading a diverse range of polysaccharides, making them useful catalysts for renewable energy and biocommodity production. Discovery of new GHs with improved kinetic parameters or more tolerant substrate-binding sites could increase the efficiency of renewable bioenergy production even further. GH5 has over 50 subfamilies exhibiting selectivities for reaction with β-(1,4)-linked oligo- and polysaccharides. Among these, subfamily 4 (GH5_4) contains numerous broad-selectivity endoglucanases that hydrolyze cellulose, xyloglucan, and mixed-linkage glucans. We previously surveyed the whole subfamily and found over 100 new broad-specificity endoglucanases, although the structural origins of broad specificity remained unclear. A mechanistic understanding of GH5_4 substrate specificity would help inform the best protein design strategies and the most appropriate industrial application of broad-specificity endoglucanases. Here we report structures of 10 new GH5_4 enzymes from cellulolytic microbes and characterize their substrate selectivity using normalized reducing sugar assays and MS. We found that GH5_4 enzymes have the highest catalytic efficiency for hydrolysis of xyloglucan, glucomannan, and soluble β-glucans, with opportunistic secondary reactions on cellulose, mannan, and xylan. The positions of key aromatic residues determine the overall reaction rate and breadth of substrate tolerance, and they contribute to differences in oligosaccharide cleavage patterns. Our new composite model identifies several critical structural features that confer broad specificity and may be readily engineered into existing industrial enzymes. We demonstrate that GH5_4 endoglucanases can have broad specificity without sacrificing high activity, making them a valuable addition to the biomass deconstruction toolset.
广谱糖苷水解酶(GHs)通过降解各种多糖来促进植物生物质水解,使它们成为可再生能源和生物商品生产的有用催化剂。发现具有改进的动力学参数或更耐受的底物结合位点的新型 GHs 可以进一步提高可再生生物能源生产的效率。GH5 有超过 50 个子家族,对与β-(1,4)-连接的寡糖和多糖反应具有选择性。在这些子家族中,子家族 4(GH5_4)包含许多广谱内切葡聚糖酶,可水解纤维素、木葡聚糖和混合键葡聚糖。我们之前对整个子家族进行了调查,发现了 100 多种新的广谱内切葡聚糖酶,尽管广谱特异性的结构起源仍不清楚。对 GH5_4 底物特异性的机制理解将有助于为最佳蛋白质设计策略提供信息,并为广谱内切葡聚糖酶的最合适工业应用提供信息。在这里,我们报告了来自纤维素分解微生物的 10 种新型 GH5_4 酶的结构,并使用归一化还原糖测定法和 MS 对其底物选择性进行了表征。我们发现 GH5_4 酶对木葡聚糖、葡甘露聚糖和可溶性β-葡聚糖的水解具有最高的催化效率,对纤维素、甘露聚糖和木聚糖具有机会性的二次反应。关键芳香族残基的位置决定了整体反应速率和底物耐受性的广度,它们有助于寡糖裂解模式的差异。我们的新综合模型确定了赋予广谱特异性的几个关键结构特征,并且可以很容易地将其引入现有的工业酶中。我们证明 GH5_4 内切葡聚糖酶可以具有广谱特异性而不牺牲高活性,使其成为生物质解构工具集的有价值的补充。