Martin Hannah, Rogers Lucy A, Moushtaq Laila, Brindley Amanda A, Forbes Polly, Quinton Amy R, Murphy Andrew R J, Hipperson Helen, Daniell Tim J, Ndeh Didier, Amsbury Sam, Hitchcock Andrew, Lidbury Ian D E A
Molecular Microbiology - Biochemistry and Disease, School of Biosciences, The University of Sheffield, Western Bank, Sheffield, S10 2TN, South Yorkshire, United Kingdom.
Plants, Photosynthesis and Soil, School of Biosciences, The University of Sheffield, Western Bank, Sheffield, S10 2TN, South Yorkshire, United Kingdom.
ISME J. 2025 Jan 2;19(1). doi: 10.1093/ismejo/wraf022.
Bacteroidota species are enriched in the plant microbiome and provide several beneficial functions for their host, including disease suppression. Determining the mechanisms that enable bacteroidota to colonise plant roots may therefore provide opportunities for enhancing crop production through microbiome engineering. By focusing on nutrient acquisition mechanisms, we discovered Bacteroidota species lack high affinity ATP-binding cassette transporters common in other plant-associated bacteria for capturing simple carbon exudates. Instead, bacteroidota possess TonB-dependent transporters predicted to import glycans produced by plant polysaccharide breakdown. Metatranscriptomics (oat rhizosphere) identified several TonB-dependent transporters genes that were highly expressed in Flavobacterium (phylum Bacteroidota). Using Flavobacterium johnsoniae as the model, we experimentally validated the function of one highly expressed TonB-dependent transporter, identifying a conserved Xyloglucan utilisation loci conferring the ability to import and degrade xyloglucan, the major hemicellulose secreted from plant roots. Xyloglucan utilisation loci harbour an endoxyloglucanase related to family 5 subfamily 4 subclade 2D glycoside hydrolases carrying a mutation that we demonstrate is required for full activity towards xyloglucan. Based on analysing 700 soil metagenomes, subclade 2D glycoside hydrolases have radiated in soil and are prevalent among plant-associated bacteroidota and certain taxa affiliated with Gammaproteobacteria. In bacteroidota, particularly Flavobacterium species, xyloglucan utilisation loci organisation was highly conserved, which may increase their competitive ability to utilise xyloglucan. Given bacteroidota lack high-affinity nutrient transporters for simple carbon, instead possessing xyloglucan utilisation loci and similar gene clusters, our data suggests hemicellulose exudates provide them with an important carbon source in the rhizosphere.
拟杆菌门物种在植物微生物组中富集,并为其宿主提供多种有益功能,包括病害抑制。因此,确定使拟杆菌门能够定殖于植物根部的机制,可能为通过微生物组工程提高作物产量提供机会。通过关注养分获取机制,我们发现拟杆菌门物种缺乏其他与植物相关细菌中常见的用于捕获简单碳分泌物的高亲和力ATP结合盒转运蛋白。相反,拟杆菌门拥有预测可导入植物多糖分解产生的聚糖的TonB依赖性转运蛋白。宏转录组学(燕麦根际)鉴定出几个在黄杆菌属(拟杆菌门)中高表达的TonB依赖性转运蛋白基因。以约氏黄杆菌为模型,我们通过实验验证了一种高表达的TonB依赖性转运蛋白的功能,确定了一个保守的木葡聚糖利用位点,该位点赋予了导入和降解木葡聚糖的能力,木葡聚糖是植物根部分泌的主要半纤维素。木葡聚糖利用位点含有一种与5家族4亚家族2D糖苷水解酶相关的内切木葡聚糖酶,该酶发生了一个突变,我们证明该突变对于木葡聚糖的完全活性是必需的。基于对700个土壤宏基因组的分析,2D亚家族糖苷水解酶在土壤中已经辐射分化,并且在与植物相关的拟杆菌门和某些γ-变形菌纲分类群中普遍存在。在拟杆菌门中,特别是黄杆菌属物种中,木葡聚糖利用位点的组织高度保守,这可能会增加它们利用木葡聚糖的竞争能力。鉴于拟杆菌门缺乏用于简单碳的高亲和力养分转运蛋白,而是拥有木葡聚糖利用位点和类似的基因簇,我们的数据表明半纤维素分泌物为它们在根际提供了重要的碳源。