Structural Biology Center, X-Ray Science Division, Argonne National Laboratory, Lemont, IL, 60439, USA.
Department of Chemical Engineering, University of California, Santa Barbara, CA, USA.
Appl Microbiol Biotechnol. 2023 Oct;107(19):5999-6011. doi: 10.1007/s00253-023-12684-0. Epub 2023 Aug 7.
Anaerobic fungi found in the guts of large herbivores are prolific biomass degraders whose genomes harbor a wealth of carbohydrate-active enzymes (CAZymes), of which only a handful are structurally or biochemically characterized. Here, we report the structure and kinetic rate parameters for a glycoside hydrolase (GH) family 5 subfamily 4 enzyme (CelD) from Piromyces finnis, a modular, cellulosome-incorporated endoglucanase that possesses three GH5 domains followed by two C-terminal fungal dockerin domains (double dockerin). We present the crystal structures of an apo wild-type CelD GH5 catalytic domain and its inactive E154A mutant in complex with cellotriose at 2.5 and 1.8 Å resolution, respectively, finding the CelD GH5 catalytic domain adopts the (β/α)-barrel fold common to many GH5 enzymes. Structural superimposition of the apo wild-type structure with the E154A mutant-cellotriose complex supports a catalytic mechanism in which the E154 carboxylate side chain acts as an acid/base and E278 acts as a complementary nucleophile. Further analysis of the cellotriose binding pocket highlights a binding groove lined with conserved aromatic amino acids that when docked with larger cellulose oligomers is capable of binding seven glucose units and accommodating branched glucan substrates. Activity analyses confirm P. finnis CelD can hydrolyze mixed linkage glucan and xyloglucan, as well as carboxymethylcellulose (CMC). Measured kinetic parameters show the P. finnis CelD GH5 catalytic domain has CMC endoglucanase activity comparable to other fungal endoglucanases with k = 6.0 ± 0.6 s and K = 7.6 ± 2.1 g/L CMC. Enzyme kinetics were unperturbed by the addition or removal of the native C-terminal dockerin domains as well as the addition of a non-native N-terminal dockerin, suggesting strict modularity among the domains of CelD. KEY POINTS: • Anaerobic fungi host a wealth of industrially useful enzymes but are understudied. • P. finnis CelD has endoglucanase activity and structure common to GH5_4 enzymes. • CelD's kinetics do not change with domain fusion, exhibiting high modularity.
大型草食动物肠道中发现的厌氧真菌是高效的生物量降解者,其基因组中含有大量的碳水化合物活性酶(CAZymes),其中只有少数几种在结构或生化上具有特征。在这里,我们报告了来自纤维囊泡菌(Piromyces finnis)的糖苷水解酶(GH)家族 5 亚家族 4 酶(CelD)的结构和动力学速率参数,该酶是一种模块化的、包含细胞外酶的内切葡聚糖酶,具有三个 GH5 结构域,其后是两个 C 端真菌 dockerin 结构域(双 dockerin)。我们分别以 2.5 和 1.8Å 的分辨率呈现了 apo 野生型 CelD GH5 催化结构域及其无活性 E154A 突变体与纤维三糖复合物的晶体结构,发现 CelD GH5 催化结构域采用了许多 GH5 酶共有的(β/α)-桶状折叠。apo 野生型结构与 E154A 突变体-纤维三糖复合物的结构叠加支持了一种催化机制,其中 E154 羧酸侧链作为酸/碱,E278 作为互补亲核试剂。对纤维三糖结合口袋的进一步分析突出了一个由保守芳香族氨基酸组成的结合槽,当与较大的纤维素低聚物结合时,它能够结合七个葡萄糖单元并容纳支链葡聚糖底物。活性分析证实,纤维囊泡菌 CelD 能够水解混合键合葡聚糖和木葡聚糖以及羧甲基纤维素(CMC)。测量的动力学参数表明,纤维囊泡菌 CelD GH5 催化结构域的 CMC 内切葡聚糖酶活性与其他真菌内切葡聚糖酶相当,k 值为 6.0±0.6s,K 值为 7.6±2.1g/L CMC。酶动力学不受添加或去除天然 C 端 dockerin 结构域以及添加非天然 N 端 dockerin 结构域的影响,表明 CelD 结构域之间具有严格的模块性。关键点: • 厌氧真菌宿主含有大量工业有用的酶,但研究较少。 • P. finnis CelD 具有内切葡聚糖酶活性和 GH5_4 酶的结构。 • CelD 的动力学不随结构域融合而改变,表现出高度的模块性。