Department of Materials Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8502, Japan.
Japan Science and Technology Agency-Precursory Research for Embryonic Science and Technology (JST-PRESTO), 4-1-8 Hon-cho, Kawaguchi, Saitama 332-0012, Japan.
ACS Biomater Sci Eng. 2020 Sep 14;6(9):4949-4956. doi: 10.1021/acsbiomaterials.0c01008. Epub 2020 Sep 2.
We attempt to predict the water contact angle (WCA) of self-assembled monolayers (SAMs) and protein adsorption on the SAMs from the chemical structures of molecules constituting the SAMs using machine learning with an artificial neural network (ANN) model. After training the ANN with data of 145 SAMs, the ANN became capable of predicting the WCA and protein adsorption accurately. The analysis of the trained ANN quantitatively revealed the importance of each structural parameter for the WCA and protein adsorption, providing essential and quantitative information for material design. We found that the degree of importance agrees well with our general perception on the physicochemical properties of SAMs. We also present the prediction of the WCA and protein adsorption of hypothetical SAMs and discuss the possibility of our approach for the material screening and design of SAMs with desired functions. On the basis of these results, we also discuss the limitation of this approach and prospects.
我们尝试通过机器学习和人工神经网络 (ANN) 模型,从构成自组装单分子层 (SAM) 的分子的化学结构来预测 SAM 的水接触角 (WCA) 和蛋白质吸附。在对 145 个 SAM 的数据进行训练后,ANN 能够准确地预测 WCA 和蛋白质吸附。经过训练的 ANN 的定量分析揭示了每个结构参数对 WCA 和蛋白质吸附的重要性,为材料设计提供了必要的定量信息。我们发现,重要性的程度与我们对 SAM 理化性质的一般认识非常吻合。我们还预测了假设的 SAM 的 WCA 和蛋白质吸附,并讨论了我们的方法在筛选具有所需功能的 SAM 材料和设计方面的可能性。基于这些结果,我们还讨论了该方法的局限性和前景。