Suppr超能文献

胶原分子中的波传播与能量耗散

Wave Propagation and Energy Dissipation in Collagen Molecules.

作者信息

Milazzo Mario, Jung Gang Seob, Danti Serena, Buehler Markus J

机构信息

Laboratory for Atomistic and Molecular Mechanics (LAMM), Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.

The BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa 56127, Italy.

出版信息

ACS Biomater Sci Eng. 2020 Mar 9;6(3):1367-1374. doi: 10.1021/acsbiomaterials.9b01742. Epub 2020 Feb 4.

Abstract

Collagen is the key protein of connective tissue (i.e., skin, tendons and ligaments, and cartilage, among others), accounting for 25-35% of the whole-body protein content and conferring mechanical stability. This protein is also a fundamental building block of bone because of its excellent mechanical properties together with carbonated hydroxyapatite minerals. Although the mechanical resilience and viscoelasticity have been studied both in vitro and in vivo from the molecular to tissue level, wave propagation properties and energy dissipation have not yet been deeply explored, in spite of being crucial to understanding the vibration dynamics of collagenous structures (e.g., eardrum, cochlear membranes) upon impulsive loads. By using a bottom-up atomistic modeling approach, here we study a collagen peptide under two distinct impulsive displacement loads, including longitudinal and transversal inputs. Using a one-dimensional string model as a model system, we investigate the roles of hydration and load direction on wave propagation along the collagen peptide and the related energy dissipation. We find that wave transmission and energy-dissipation strongly depend on the loading direction. Also, the hydrated collagen peptide can dissipate five times more energy than dehydrated one. Our work suggests a distinct role of collagen in term of wave transmission of different tissues such as tendon and eardrum. This study can step toward understanding the mechanical behavior of collagen upon transient loads, impact loading and fatigue, and designing biomimetic and bioinspired materials to replace specific native tissues such as the tympanic membrane.

摘要

胶原蛋白是结缔组织(如皮肤、肌腱和韧带、软骨等)的关键蛋白质,占全身蛋白质含量的25 - 35%,并赋予机械稳定性。由于其优异的机械性能以及碳酸羟基磷灰石矿物质,这种蛋白质也是骨骼的基本组成部分。尽管从分子到组织层面,已经在体外和体内研究了胶原蛋白的机械弹性和粘弹性,但波传播特性和能量耗散尚未得到深入探索,尽管这对于理解胶原结构(如鼓膜、耳蜗膜)在冲击载荷下的振动动力学至关重要。通过使用自下而上的原子建模方法,我们在此研究了在两种不同的脉冲位移载荷下的胶原蛋白肽,包括纵向和横向输入。使用一维弦模型作为模型系统,我们研究了水合作用和载荷方向对沿胶原蛋白肽的波传播以及相关能量耗散的作用。我们发现波传播和能量耗散强烈依赖于载荷方向。此外,水合的胶原蛋白肽比脱水的胶原蛋白肽能多耗散五倍的能量。我们的工作表明胶原蛋白在不同组织(如肌腱和鼓膜)的波传播方面具有独特作用。这项研究有助于理解胶原蛋白在瞬态载荷、冲击载荷和疲劳作用下的力学行为,并设计仿生和受生物启发的材料来替代特定的天然组织,如鼓膜。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验