Suppr超能文献

矿化胶原纤维在瞬态载荷作用下的力学特性

Mechanics of Mineralized Collagen Fibrils upon Transient Loads.

作者信息

Milazzo Mario, Jung Gang Seob, Danti Serena, Buehler Markus J

机构信息

Laboratory for Atomistic and Molecular Mechanics (LAMM), Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States.

The BioRobotics Institute, Scuola Su periore Sant'Anna, Viale Rinaldo Piaggio 34, 56025 Pontedera, Pisa, Italy.

出版信息

ACS Nano. 2020 Jul 28;14(7):8307-8316. doi: 10.1021/acsnano.0c02180. Epub 2020 Jul 7.

Abstract

Collagen is a key structural protein in the human body, which undergoes mineralization during the formation of hard tissues. Earlier studies have described the mechanical behavior of bone at different scales, highlighting material features across hierarchical structures. Here we present a study that aims to understand the mechanical properties of mineralized collagen fibrils upon tensile/compressive transient loads, investigating how the kinetic energy propagates and it is dissipated at the molecular scale, thus filling a gap of knowledge in this area. These specific features are the mechanisms that nature has developed to passively dissipate stress and prevent structural failures. In addition to the mechanical properties of the mineralized fibrils, we observe distinct nanomechanical behaviors for the two regions (.., overlap and gap) of the -period to highlight the effect of the mineralization. We notice decreasing trends for both wave speeds and Young's moduli over input velocity with a marked strengthening effect in the gap region due to the accumulation of the hydroxyapatite. In contrast, the dissipative behavior is not affected by either loading conditions or the mineral percentage, showing a stronger damping effect upon faster inputs compatible to the bone behavior at the macroscale. Our results offer insights into the dissipative behavior of mineralized collagen composites to design and characterize bioinspired composites for replacement devices ( prostheses for sound transmission or conduction) or optimized structures able to bear transient loads, for example, impact, fatigue, in structural applications.

摘要

胶原蛋白是人体中的一种关键结构蛋白,在硬组织形成过程中会发生矿化。早期研究描述了不同尺度下骨骼的力学行为,突出了跨层次结构的材料特征。在此,我们展示一项旨在了解矿化胶原纤维在拉伸/压缩瞬态载荷下力学性能的研究,探究动能如何在分子尺度上传播和耗散,从而填补该领域的知识空白。这些特定特征是自然发展出的被动耗散应力和防止结构失效的机制。除了矿化纤维的力学性能,我们观察到周期的两个区域(即重叠区和间隙区)有明显的纳米力学行为,以突出矿化的影响。我们注意到,随着输入速度增加,波速和杨氏模量均呈下降趋势,由于羟基磷灰石的积累,间隙区有显著的强化效应。相比之下,耗散行为不受加载条件或矿物质百分比的影响,在与宏观尺度下骨骼行为相匹配的更快输入时表现出更强的阻尼效应。我们的研究结果为矿化胶原复合材料的耗散行为提供了见解,有助于设计和表征用于替代装置(如声音传输或传导假体)的仿生复合材料,或用于结构应用中承受瞬态载荷(如冲击、疲劳)的优化结构。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验