Suppr超能文献

CRISPR/Cas9 基因编辑治疗镰状细胞病。

CRISPR/Cas9 gene editing for curing sickle cell disease.

机构信息

Department of Bioengineering, Rice University, 6500 Main St, Houston, TX, 77030, USA.

出版信息

Transfus Apher Sci. 2021 Feb;60(1):103060. doi: 10.1016/j.transci.2021.103060. Epub 2021 Jan 10.

Abstract

Sickle cell disease (SCD) is the most common monogenic blood disorder marked by severe pain, end-organ damage, and early mortality. Treatment options for SCD remain very limited. There are only four FDA approved drugs to reduce acute complications. The only curative therapy for SCD is hematopoietic stem cell transplantation, typically from a matched, related donor. Ex vivo engineering of autologous hematopoietic stem and progenitor cells followed by transplantation of genetically modified cells potentially provides a permanent cure applicable to all patients regardless of the availability of suitable donors and graft-vs-host disease. In this review, we focus on the use of CRISPR/Cas9 gene-editing for curing SCD, including the curative correction of SCD mutation in β-globin (HBB) and the induction of fetal hemoglobin to reverse sickling. We summarize the major achievements and challenges, aiming to provide a clearer perspective on the potential of gene-editing based approaches in curing SCD.

摘要

镰状细胞病(SCD)是最常见的单基因血液疾病,其特征为严重疼痛、终末器官损伤和早逝。SCD 的治疗选择仍然非常有限。仅有四种 FDA 批准的药物可减少急性并发症。SCD 的唯一治愈疗法是造血干细胞移植,通常来自匹配的相关供体。自体造血干细胞和祖细胞的体外工程,然后移植经过基因修饰的细胞,有可能提供一种永久性的治愈方法,适用于所有患者,而与合适供体的可用性和移植物抗宿主病无关。在这篇综述中,我们专注于使用 CRISPR/Cas9 基因编辑来治疗 SCD,包括对 HBB 中 SCD 突变的治愈性纠正和诱导胎儿血红蛋白以逆转镰状化。我们总结了主要的成就和挑战,旨在更清楚地了解基于基因编辑的方法在治疗 SCD 方面的潜力。

相似文献

1
CRISPR/Cas9 gene editing for curing sickle cell disease.
Transfus Apher Sci. 2021 Feb;60(1):103060. doi: 10.1016/j.transci.2021.103060. Epub 2021 Jan 10.
2
CRISPR/Cas9 for Sickle Cell Disease: Applications, Future Possibilities, and Challenges.
Adv Exp Med Biol. 2019;1144:37-52. doi: 10.1007/5584_2018_331.
3
CRISPR/Cas9-based gene-editing technology for sickle cell disease.
Gene. 2023 Jul 20;874:147480. doi: 10.1016/j.gene.2023.147480. Epub 2023 May 12.
7
Revolutionising healing: Gene Editing's breakthrough against sickle cell disease.
Blood Rev. 2024 May;65:101185. doi: 10.1016/j.blre.2024.101185. Epub 2024 Mar 7.
8
Selection-free genome editing of the sickle mutation in human adult hematopoietic stem/progenitor cells.
Sci Transl Med. 2016 Oct 12;8(360):360ra134. doi: 10.1126/scitranslmed.aaf9336.

引用本文的文献

1
Biosafety considerations triggered by genome-editing technologies.
Biosaf Health. 2025 May 13;7(3):141-151. doi: 10.1016/j.bsheal.2025.05.003. eCollection 2025 Jun.
2
An engineered β-globin homology donor reveals insights into β-globin expression and betters HDR.
Mol Ther. 2025 Apr 2;33(4):1308-1309. doi: 10.1016/j.ymthe.2025.03.007. Epub 2025 Mar 22.
3
Advancements in pathology: Digital transformation, precision medicine, and beyond.
J Pathol Inform. 2024 Nov 19;16:100408. doi: 10.1016/j.jpi.2024.100408. eCollection 2025 Jan.
6
CRISPR/Cas9 in the treatment of sickle cell disease (SCD) and its comparison with traditional treatment approaches: a review.
Ann Med Surg (Lond). 2024 Aug 14;86(10):5938-5946. doi: 10.1097/MS9.0000000000002478. eCollection 2024 Oct.
7
Therapeutics for sickle cell disease intravascular hemolysis.
Front Physiol. 2024 Sep 13;15:1474569. doi: 10.3389/fphys.2024.1474569. eCollection 2024.
8
CRISPR technology in human diseases.
MedComm (2020). 2024 Jul 29;5(8):e672. doi: 10.1002/mco2.672. eCollection 2024 Aug.
9
A review on molecular scissoring with CRISPR/Cas9 genome editing technology.
Toxicol Res (Camb). 2024 Jul 12;13(4):tfae105. doi: 10.1093/toxres/tfae105. eCollection 2024 Aug.

本文引用的文献

1
High-level correction of the sickle mutation is amplified during erythroid differentiation.
iScience. 2022 May 10;25(6):104374. doi: 10.1016/j.isci.2022.104374. eCollection 2022 Jun 17.
2
Engineered materials for in vivo delivery of genome-editing machinery.
Nat Rev Mater. 2019 Nov;4:726-737. doi: 10.1038/s41578-019-0145-9. Epub 2019 Oct 4.
4
Stem cell homing: From physiology to therapeutics.
Stem Cells. 2020 Oct 1;38(10):1241-1253. doi: 10.1002/stem.3242. Epub 2020 Jul 21.
5
AAV-CRISPR Gene Editing Is Negated by Pre-existing Immunity to Cas9.
Mol Ther. 2020 Jun 3;28(6):1432-1441. doi: 10.1016/j.ymthe.2020.04.017. Epub 2020 Apr 19.
6
Therapeutic base editing of human hematopoietic stem cells.
Nat Med. 2020 Apr;26(4):535-541. doi: 10.1038/s41591-020-0790-y. Epub 2020 Mar 16.
7
Reactivation of γ-globin expression through Cas9 or base editor to treat β-hemoglobinopathies.
Cell Res. 2020 Mar;30(3):276-278. doi: 10.1038/s41422-019-0267-z. Epub 2020 Jan 7.
8
Genome editing of HBG1 and HBG2 to induce fetal hemoglobin.
Blood Adv. 2019 Nov 12;3(21):3379-3392. doi: 10.1182/bloodadvances.2019000820.
9
CRISPR-Cas9 gene editing for patients with haemoglobinopathies.
Lancet Haematol. 2019 Sep;6(9):e438. doi: 10.1016/S2352-3026(19)30169-3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验