DeWitt Mark A, Magis Wendy, Bray Nicolas L, Wang Tianjiao, Berman Jennifer R, Urbinati Fabrizia, Heo Seok-Jin, Mitros Therese, Muñoz Denise P, Boffelli Dario, Kohn Donald B, Walters Mark C, Carroll Dana, Martin David I K, Corn Jacob E
Innovative Genomics Initiative, University of California, Berkeley, Berkeley, CA 94720, USA. Department of Molecular and Cellular Biology, University of California, Berkeley, Berkeley, CA 94720, USA.
Children's Hospital Oakland Research Institute, University of California San Francisco (UCSF) Benioff Children's Hospital, Oakland, CA 94609, USA.
Sci Transl Med. 2016 Oct 12;8(360):360ra134. doi: 10.1126/scitranslmed.aaf9336.
Genetic diseases of blood cells are prime candidates for treatment through ex vivo gene editing of CD34 hematopoietic stem/progenitor cells (HSPCs), and a variety of technologies have been proposed to treat these disorders. Sickle cell disease (SCD) is a recessive genetic disorder caused by a single-nucleotide polymorphism in the β-globin gene (HBB). Sickle hemoglobin damages erythrocytes, causing vasoocclusion, severe pain, progressive organ damage, and premature death. We optimize design and delivery parameters of a ribonucleoprotein (RNP) complex comprising Cas9 protein and unmodified single guide RNA, together with a single-stranded DNA oligonucleotide donor (ssODN), to enable efficient replacement of the SCD mutation in human HSPCs. Corrected HSPCs from SCD patients produced less sickle hemoglobin RNA and protein and correspondingly increased wild-type hemoglobin when differentiated into erythroblasts. When engrafted into immunocompromised mice, ex vivo treated human HSPCs maintain SCD gene edits throughout 16 weeks at a level likely to have clinical benefit. These results demonstrate that an accessible approach combining Cas9 RNP with an ssODN can mediate efficient HSPC genome editing, enables investigator-led exploration of gene editing reagents in primary hematopoietic stem cells, and suggests a path toward the development of new gene editing treatments for SCD and other hematopoietic diseases.
血细胞的遗传疾病是通过对CD34造血干/祖细胞(HSPCs)进行体外基因编辑来治疗的主要候选对象,并且已经提出了多种技术来治疗这些疾病。镰状细胞病(SCD)是一种由β-珠蛋白基因(HBB)中的单核苷酸多态性引起的隐性遗传疾病。镰状血红蛋白会损害红细胞,导致血管阻塞、剧痛、进行性器官损伤和过早死亡。我们优化了一种核糖核蛋白(RNP)复合物的设计和递送参数,该复合物由Cas9蛋白、未修饰的单向导RNA以及单链DNA寡核苷酸供体(ssODN)组成,以实现人类HSPCs中SCD突变的有效替换。来自SCD患者的经校正的HSPCs在分化为成红细胞时产生的镰状血红蛋白RNA和蛋白质减少,相应地野生型血红蛋白增加。当移植到免疫缺陷小鼠体内时,经体外处理的人类HSPCs在16周内维持SCD基因编辑,其水平可能具有临床益处。这些结果表明,一种将Cas9 RNP与ssODN相结合的可行方法可以介导高效的HSPC基因组编辑,使研究人员能够在原代造血干细胞中探索基因编辑试剂,并为开发针对SCD和其他造血疾病的新基因编辑疗法指明了道路。