Suppr超能文献

重要事项:测量不变性检验中的参考指标选择

It Matters: Reference Indicator Selection in Measurement Invariance Tests.

作者信息

Thompson Yutian T, Song Hairong, Shi Dexin, Liu Zhengkui

机构信息

University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.

University of Oklahoma, Norman, OK, USA.

出版信息

Educ Psychol Meas. 2021 Feb;81(1):5-38. doi: 10.1177/0013164420926565. Epub 2020 Jun 5.

Abstract

Conventional approaches for selecting a reference indicator (RI) could lead to misleading results in testing for measurement invariance (MI). Several newer quantitative methods have been available for more rigorous RI selection. However, it is still unknown how well these methods perform in terms of correctly identifying a truly invariant item to be an RI. Thus, Study 1 was designed to address this issue in various conditions using simulated data. As a follow-up, Study 2 further investigated the advantages/disadvantages of using RI-based approaches for MI testing in comparison with non-RI-based approaches. Altogether, the two studies provided a solid examination on how RI matters in MI tests. In addition, a large sample of real-world data was used to empirically compare the uses of the RI selection methods as well as the RI-based and non-RI-based approaches for MI testing. In the end, we offered a discussion on all these methods, followed by suggestions and recommendations for applied researchers.

摘要

选择参考指标(RI)的传统方法在测量不变性(MI)检验中可能会导致误导性结果。有几种更新的定量方法可用于更严格地选择RI。然而,这些方法在正确识别真正不变的项目作为RI方面的表现如何仍不清楚。因此,研究1旨在使用模拟数据在各种条件下解决这个问题。作为后续,研究2进一步研究了与非基于RI的方法相比,使用基于RI的方法进行MI检验的优缺点。总之,这两项研究对RI在MI检验中的重要性进行了扎实的考察。此外,还使用了大量现实世界的数据来实证比较RI选择方法以及基于RI和非基于RI的MI检验方法的使用情况。最后,我们对所有这些方法进行了讨论,并为应用研究人员提供了建议。

相似文献

1
It Matters: Reference Indicator Selection in Measurement Invariance Tests.
Educ Psychol Meas. 2021 Feb;81(1):5-38. doi: 10.1177/0013164420926565. Epub 2020 Jun 5.
3
An essay on measurement and factorial invariance.
Med Care. 2006 Nov;44(11 Suppl 3):S69-77. doi: 10.1097/01.mlr.0000245438.73837.89.
4
What's hampering measurement invariance: detecting non-invariant items using clusterwise simultaneous component analysis.
Front Psychol. 2014 Jun 20;5:604. doi: 10.3389/fpsyg.2014.00604. eCollection 2014.
6
WAIS-III measurement invariance: Data from Estonian standardization.
Clin Neuropsychol. 2021 Dec;35(sup1):S1-S20. doi: 10.1080/13854046.2020.1812723. Epub 2020 Aug 28.
7
Power and sensitivity of alternative fit indices in tests of measurement invariance.
J Appl Psychol. 2008 May;93(3):568-92. doi: 10.1037/0021-9010.93.3.568.
10
Solving the measurement invariance anchor item problem in item response theory.
J Appl Psychol. 2012 Sep;97(5):1016-31. doi: 10.1037/a0027934. Epub 2012 Apr 2.

本文引用的文献

1
Understanding the Model Size Effect on SEM Fit Indices.
Educ Psychol Meas. 2019 Apr;79(2):310-334. doi: 10.1177/0013164418783530. Epub 2018 Jun 29.
2
Evaluating Factorial Invariance: An Interval Estimation Approach Using Bayesian Structural Equation Modeling.
Multivariate Behav Res. 2019 Mar-Apr;54(2):224-245. doi: 10.1080/00273171.2018.1514484. Epub 2018 Dec 20.
3
The Thorny Relation Between Measurement Quality and Fit Index Cutoffs in Latent Variable Models.
J Pers Assess. 2018 Jan-Feb;100(1):43-52. doi: 10.1080/00223891.2017.1281286. Epub 2017 Mar 2.
4
The Impact of Partial Factorial Invariance on Cross-Group Comparisons.
Assessment. 2019 Oct;26(7):1217-1233. doi: 10.1177/1073191117711020. Epub 2017 Jun 9.
5
Bayesian SEM for Specification Search Problems in Testing Factorial Invariance.
Multivariate Behav Res. 2017 Jul-Aug;52(4):430-444. doi: 10.1080/00273171.2017.1306432. Epub 2017 Apr 21.
6
Bayesian structural equation modeling: a more flexible representation of substantive theory.
Psychol Methods. 2012 Sep;17(3):313-35. doi: 10.1037/a0026802.
7
Solving the measurement invariance anchor item problem in item response theory.
J Appl Psychol. 2012 Sep;97(5):1016-31. doi: 10.1037/a0027934. Epub 2012 Apr 2.
9
A taxonomy of effect size measures for the differential functioning of items and scales.
J Appl Psychol. 2010 Jul;95(4):728-43. doi: 10.1037/a0018966.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验