Suppr超能文献

两种针对复发性感染风险患者的预测工具的外部验证

External validation of two prediction tools for patients at risk for recurrent infection.

作者信息

van Rossen Tessel M, van Dijk Laura J, Heymans Martijn W, Dekkers Olaf M, Vandenbroucke-Grauls Christina M J E, van Beurden Yvette H

机构信息

Amsterdam UMC, Vrije Universiteit Amsterdam, Medical Microbiology and Infection Control, Amsterdam Infection and Immunity Institute, Amsterdam UMC location VUmc, PK 2X132, De Boelelaan 1117, Amsterdam, 1081 HV, The Netherlands.

Amsterdam UMC, Vrije Universiteit Amsterdam, Gastroenterology and Hepatology, Amsterdam Gastroenterology Endocrinology Metabolism Institute, Amsterdam, The Netherlands.

出版信息

Therap Adv Gastroenterol. 2021 Jan 9;14:1756284820977385. doi: 10.1177/1756284820977385. eCollection 2021.

Abstract

BACKGROUND

One in four patients with primary infection (CDI) develops recurrent CDI (rCDI). With every recurrence, the chance of a subsequent CDI episode increases. Early identification of patients at risk for rCDI might help doctors to guide treatment. The aim of this study was to externally validate published clinical prediction tools for rCDI.

METHODS

The validation cohort consisted of 129 patients, diagnosed with CDI between 2018 and 2020. rCDI risk scores were calculated for each individual patient in the validation cohort using the scoring tools described in the derivation studies. Per score value, we compared the average predicted risk of rCDI with the observed number of rCDI cases. Discrimination was assessed by calculating the area under the receiver operating characteristic curve (AUC).

RESULTS

Two prediction tools were selected for validation (Cobo 2018 and Larrainzar-Coghen 2016). The two derivation studies used different definitions for rCDI. Using Cobo's definition, rCDI occurred in 34 patients (26%) of the validation cohort: using the definition of Larrainzar-Coghen, we observed 19 recurrences (15%). The performance of both prediction tools was poor when applied to our validation cohort. The estimated AUC was 0.43 [95% confidence interval (CI); 0.32-0.54] for Cobo's tool and 0.42 (95% CI; 0.28-0.56) for Larrainzar-Coghen's tool.

CONCLUSION

Performance of both prediction tools was disappointing in the external validation cohort. Currently identified clinical risk factors may not be sufficient for accurate prediction of rCDI.

摘要

背景

四分之一的原发性艰难梭菌感染(CDI)患者会发展为复发性艰难梭菌感染(rCDI)。每一次复发,后续发生CDI发作的几率都会增加。早期识别有rCDI风险的患者可能有助于医生指导治疗。本研究的目的是对已发表的rCDI临床预测工具进行外部验证。

方法

验证队列由129例在2018年至2020年间被诊断为CDI的患者组成。使用推导研究中描述的评分工具为验证队列中的每位患者计算rCDI风险评分。对于每个评分值,我们将rCDI的平均预测风险与观察到的rCDI病例数进行比较。通过计算受试者工作特征曲线(AUC)下的面积来评估辨别力。

结果

选择了两种预测工具进行验证(Cobo 2018和Larrainzar - Coghen 2016)。两项推导研究对rCDI使用了不同的定义。使用Cobo的定义,验证队列中有34例患者(26%)发生了rCDI:使用Larrainzar - Coghen的定义,我们观察到19例复发(15%)。当应用于我们的验证队列时,两种预测工具的表现都很差。Cobo工具的估计AUC为0.43 [95%置信区间(CI);0.32 - 0.54],Larrainzar - Coghen工具的估计AUC为0.42(95% CI;0.28 - 0.56)。

结论

在外部验证队列中,两种预测工具的表现都令人失望。目前确定的临床风险因素可能不足以准确预测rCDI。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6e55/7797589/d822062e4cf2/10.1177_1756284820977385-fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验