Suppr超能文献

A stable linear algorithm for fitting the lognormal model to survival data.

作者信息

Gamel J W, Greenberg R A, McLean I W

机构信息

Department of Ophthalmology, University of Louisville School of Medicine, Kentucky 40202.

出版信息

Comput Biomed Res. 1988 Feb;21(1):38-47. doi: 10.1016/0010-4809(88)90040-7.

Abstract

The lognormal model can be fitted to survival data using a stable linear algorithm. When tested on 800 sets of mathematically generated data, this method proved more stable and efficient than the iterative method of maximum likelihood, which requires initial estimates of model parameters and failed to fit a substantial fraction of data sets. Though maximum likelihood yielded more consistent estimates of proportion cured, mean, and standard deviation of log(survival time), the linear normal algorithm may nevertheless prove useful for these purposes: (i) computing initial estimates of model parameters for the maximum likelihood method; (ii) fitting data sets that cannot be fit by this method; and (iii) deriving the lognormal model directly from cumulative mortality.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验