Marshall G, Guo W, Jones R H
Departamento de Estadistica, Pontificia Universidad Católica de Chile, Casilla, Santiago.
Comput Methods Programs Biomed. 1995 Jul;47(2):147-56. doi: 10.1016/0169-2607(95)01641-6.
This paper discusses a computer program, called MARKOV, designed to fit a multi-state Markov model with covariables, with a particular emphasis on the analysis of survival data. The Markov model consists of k-1 transient disease states and one absorbing state. The exact transition times are not observed, except in situations such as death. Baseline transition intensities and regression coefficients are estimated via the method of maximum likelihood using a quasi-Newton optimization algorithm. The program's output includes the parameter estimates, the standard error of the estimates, the matrix of the correlation of the estimates and minus two times the log-likelihood function, evaluated at the initial values and at the maximum likelihood estimates. Optionally, survival curves can be generated from each transient state, for one or more combination of covariable values and simple tests about the parameters. The program is illustrated by using a four-state model to determine factors influencing diabetic retinopathy in young subjects with insulin-dependent diabetes mellitus.
本文讨论了一个名为MARKOV的计算机程序,该程序旨在拟合一个带有协变量的多状态马尔可夫模型,特别侧重于生存数据分析。马尔可夫模型由k - 1个暂态疾病状态和一个吸收状态组成。除了死亡等情况外,确切的转移时间是无法观察到的。基线转移强度和回归系数通过使用拟牛顿优化算法的最大似然法进行估计。该程序的输出包括参数估计值、估计值的标准误差、估计值的相关矩阵以及在初始值和最大似然估计值处评估的负两倍对数似然函数。此外,还可以针对一个或多个协变量值组合从每个暂态状态生成生存曲线,并对参数进行简单检验。通过使用一个四状态模型来确定影响胰岛素依赖型糖尿病年轻患者糖尿病视网膜病变的因素,对该程序进行了说明。