Vallières Martin, Serban Monica, Benzyane Ibtissam, Ahmed Zaki, Xing Shu, El Naqa Issam, Levesque Ives R, Seuntjens Jan, Freeman Carolyn R
Medical Physics Unit, McGill University, Cedars Cancer Centre, McGill University Health Centre - Glen Site, 1001 boulevard Décarie, Montréal, QC H4A 3J1, Canada.
Department of Radiation Oncology, Physics Division, University of Michigan, 519 W. Williman St. Argus Bldg, Ann Arbor, MI 48103-4943, USA.
Phys Imaging Radiat Oncol. 2018 May 19;6:53-60. doi: 10.1016/j.phro.2018.05.003. eCollection 2018 Apr.
In this work, we validate a texture-based model computed from positron emission tomography (PET) and magnetic resonance imaging (MRI) for the prediction of lung metastases in soft-tissue sarcomas (STS). We explore functional imaging at different treatment time points and evaluate the feasibility of radiotherapy dose painting as a potential treatment strategy for patients with higher metastatic risk.
We acquired fluorodeoxyglucose (FDG)-PET, fluoromisonidazole (FMISO)-PET, diffusion weighting (DW)-MRI and dynamic contrast enhanced (DCE)-MRI data for 18 patients with extremity STS before, during, and after pre-operative radiotherapy. We tested the lung metastases prediction model using pre-treatment images. We evaluated the feasibility of dose painting using volumetric arc therapy (VMAT) via treatment re-planning with a prescription of 50 Gy to the planning target volume (PTV) and boost doses of 60 Gy to the FDG hypermetabolic gross tumour volume (GTV) and 65 Gy to the low-perfusion DCE-MRI hypoxic GTV contained within the GTV (GTV).
The texture-based model for lung metastases prediction reached an area under the curve (AUC), sensitivity, specificity and accuracy of 0.71, 0.75, 0.85 and 0.82, respectively. Dose painting resulted in adequate coverage and homogeneity in the re-planned treatments: D to the PTV, GTV and GTV were 50.0 Gy, 60.3 Gy and 65.4 Gy, respectively.
Textural biomarkers extracted from FDG-PET and MRI could be useful to identify STS patients that might benefit from dose escalation. The feasibility of treatment planning with double boost levels to intratumoural GTV functional sub-volumes was established.
在本研究中,我们验证了一种基于纹理的模型,该模型由正电子发射断层扫描(PET)和磁共振成像(MRI)计算得出,用于预测软组织肉瘤(STS)的肺转移。我们探索了不同治疗时间点的功能成像,并评估了放射治疗剂量描绘作为高转移风险患者潜在治疗策略的可行性。
我们获取了18例肢体STS患者在术前放疗前、放疗期间和放疗后的氟脱氧葡萄糖(FDG)-PET、氟米索硝唑(FMISO)-PET、扩散加权(DW)-MRI和动态对比增强(DCE)-MRI数据。我们使用治疗前图像测试了肺转移预测模型。我们通过容积弧形调强放疗(VMAT)进行治疗重新规划,评估了剂量描绘的可行性,处方剂量为计划靶体积(PTV)50 Gy,向FDG高代谢大体肿瘤体积(GTV)追加剂量60 Gy,向包含在GTV内的低灌注DCE-MRI缺氧GTV(GTV)追加剂量65 Gy。
基于纹理的肺转移预测模型的曲线下面积(AUC)为0.71,灵敏度为0.75,特异性为0.85,准确率为0.82。剂量描绘在重新规划的治疗中实现了充分的覆盖和均匀性:PTV、GTV和GTV的剂量分别为50.0 Gy、60.3 Gy和65.4 Gy。
从FDG-PET和MRI中提取的纹理生物标志物可能有助于识别可能从剂量增加中获益的STS患者。确定了对肿瘤内GTV功能子体积进行双重追加剂量水平的治疗计划的可行性。