Suppr超能文献

前列腺癌剂量勾画放疗和高剂量率近距离放疗期间表观扩散系数影像组学特征的变化

Changes in apparent diffusion coefficient radiomics features during dose-painted radiotherapy and high dose rate brachytherapy for prostate cancer.

作者信息

Lee Sangjune Laurence, Lee Jenny, Craig Tim, Berlin Alejandro, Chung Peter, Ménard Cynthia, Foltz Warren D

机构信息

Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.

Department of Radiation Oncology, University of Toronto, Toronto, Canada.

出版信息

Phys Imaging Radiat Oncol. 2018 Dec 19;9:1-6. doi: 10.1016/j.phro.2018.11.006. eCollection 2019 Jan.

Abstract

BACKGROUND AND PURPOSE

Dose escalation has improved cancer outcomes for patients with localized prostate cancer. Targeting subprostatic tumor regions for dose intensification may further improve outcomes. Apparent Diffusion Coefficient (ADC) maps may enable early radiation response assessment and dose adaptation. This study was a proof-of-principle investigation of early changes in ADC radiomics features for patients undergoing radiotherapy with dose escalation to the gross tumor volume (GTV).

MATERIALS AND METHODS

Fifty-nine patients were enrolled on a prospective tumor dose-escalation trial. Multi-parametric MRI was performed at baseline and week six, corresponding to the time of peak ADC change. GTV and prostate contours were deformably registered between baseline and week six T2-weighted images, and applied to ADC maps, to account for diminished image contrast post-EBRT and possible differences in prostate gland volume, shape, and orientation. A total of 101 radiomics features were tested for significant change post-EBRT using two-tailed Student's -test. All ADC features of the prostate and GTV volumes were correlated using Pearson's coefficient (p < 0.00008, based on Bonferroni correction).

RESULTS

ADC feature extraction was insensitive to b = 0 s/mm exclusion, and to gradient non-linearity bias. GTV presented predominant changes in first-order features, particularly 10Percentile, and prostate volumes presented predominant changes in second-order features. Changes in both first and second-order features of GTV and prostate ROIs were strongly correlated.

CONCLUSIONS

Our data confirmed significant changes in numerous GTV and prostate features assessed from ADC and T2-weighted images during radiotherapy; all of which may be potential biomarkers of early radiation response.

摘要

背景与目的

剂量递增已改善了局限性前列腺癌患者的癌症治疗效果。针对前列腺肿瘤亚区域进行剂量强化可能会进一步改善治疗效果。表观扩散系数(ADC)图或许能够实现早期放射反应评估和剂量调整。本研究是一项针对接受向大体肿瘤体积(GTV)进行剂量递增放疗的患者,对ADC影像组学特征早期变化的原理验证性研究。

材料与方法

59名患者参加了一项前瞻性肿瘤剂量递增试验。在基线期和第6周进行多参数MRI检查,第6周对应ADC变化的峰值时间。在基线期和第6周的T2加权图像之间对GTV和前列腺轮廓进行弹性配准,并应用于ADC图,以考虑体外放射治疗(EBRT)后图像对比度降低以及前列腺体积、形状和方向可能存在的差异。使用双尾学生t检验对总共101个影像组学特征在EBRT后的显著变化进行测试。使用Pearson系数(基于Bonferroni校正,p < 0.00008)对前列腺和GTV体积的所有ADC特征进行相关性分析。

结果

ADC特征提取对b = 0 s/mm排除以及梯度非线性偏差不敏感。GTV在一阶特征方面呈现出主要变化,尤其是第10百分位数,而前列腺体积在二阶特征方面呈现出主要变化。GTV和前列腺感兴趣区的一阶和二阶特征变化都具有很强的相关性。

结论

我们的数据证实了放疗期间从ADC和T2加权图像评估的众多GTV和前列腺特征存在显著变化;所有这些特征都可能是早期放射反应的潜在生物标志物。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b0c0/7807683/5f6eb228f006/gr1.jpg

相似文献

1
Changes in apparent diffusion coefficient radiomics features during dose-painted radiotherapy and high dose rate brachytherapy for prostate cancer.
Phys Imaging Radiat Oncol. 2018 Dec 19;9:1-6. doi: 10.1016/j.phro.2018.11.006. eCollection 2019 Jan.
4
Radiomics analysis of apparent diffusion coefficient in cervical cancer: A preliminary study on histological grade evaluation.
J Magn Reson Imaging. 2019 Jan;49(1):280-290. doi: 10.1002/jmri.26192. Epub 2018 May 14.
7
Repeatability and reproducibility of prostate apparent diffusion coefficient values on a 1.5 T magnetic resonance linear accelerator.
Phys Imaging Radiat Oncol. 2024 Mar 15;30:100570. doi: 10.1016/j.phro.2024.100570. eCollection 2024 Apr.

引用本文的文献

2
Delta-radiomics features of ADC maps as early predictors of treatment response in lung cancer.
Insights Imaging. 2024 Aug 26;15(1):218. doi: 10.1186/s13244-024-01787-5.
4
Radiomics in prostate cancer: an up-to-date review.
Ther Adv Urol. 2022 Jul 4;14:17562872221109020. doi: 10.1177/17562872221109020. eCollection 2022 Jan-Dec.
5
The role of MRI in prostate cancer: current and future directions.
MAGMA. 2022 Aug;35(4):503-521. doi: 10.1007/s10334-022-01006-6. Epub 2022 Mar 16.
6
Prostate Cancer Radiogenomics-From Imaging to Molecular Characterization.
Int J Mol Sci. 2021 Sep 15;22(18):9971. doi: 10.3390/ijms22189971.
8
Imaging for radiation treatment planning and monitoring in prostate Cancer: Precision, personalization, individualization of therapy.
Phys Imaging Radiat Oncol. 2019 Sep 10;11:61-62. doi: 10.1016/j.phro.2019.09.001. eCollection 2019 Jul.

本文引用的文献

1
Multimodal Radiomic Features for the Predicting Gleason Score of Prostate Cancer.
Cancers (Basel). 2018 Jul 28;10(8):249. doi: 10.3390/cancers10080249.
2
Rectal wall MRI radiomics in prostate cancer patients: prediction of and correlation with early rectal toxicity.
Int J Radiat Biol. 2018 Sep;94(9):829-837. doi: 10.1080/09553002.2018.1492756. Epub 2018 Sep 10.
3
Prostate cancer radiomics and the promise of radiogenomics.
Transl Cancer Res. 2016 Aug;5(4):432-447. doi: 10.21037/tcr.2016.06.20.
4
Computational Radiomics System to Decode the Radiographic Phenotype.
Cancer Res. 2017 Nov 1;77(21):e104-e107. doi: 10.1158/0008-5472.CAN-17-0339.
5
Association between pathology and texture features of multi parametric MRI of the prostate.
Phys Med Biol. 2017 Sep 21;62(19):7833-7854. doi: 10.1088/1361-6560/aa884d.
8
PI-RADS Version 2: A Pictorial Update.
Radiographics. 2016 Sep-Oct;36(5):1354-72. doi: 10.1148/rg.2016150234. Epub 2016 Jul 29.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验