Suppr超能文献

基于多模态预测学习的阿尔茨海默病定量纵向预测。

Quantitative Longitudinal Predictions of Alzheimer's Disease by Multi-Modal Predictive Learning.

机构信息

University of Eastern Finland, A.I. Virtanen Institute for Molecular Sciences, Kuopio, Finland.

Zewail City of Science and Technology, Giza, Egypt.

出版信息

J Alzheimers Dis. 2021;79(4):1533-1546. doi: 10.3233/JAD-200906.

Abstract

BACKGROUND

Quantitatively predicting the progression of Alzheimer's disease (AD) in an individual on a continuous scale, such as the Alzheimer's Disease Assessment Scale-cognitive (ADAS-cog) scores, is informative for a personalized approach as opposed to qualitatively classifying the individual into a broad disease category.

OBJECTIVE

To evaluate the hypothesis that the multi-modal data and predictive learning models can be employed for future predicting ADAS-cog scores.

METHODS

Unimodal and multi-modal regression models were trained on baseline data comprised of demographics, neuroimaging, and cerebrospinal fluid based markers, and genetic factors to predict future ADAS-cog scores for 12, 24, and 36 months. We subjected the prediction models to repeated cross-validation and assessed the resulting mean absolute error (MAE) and cross-validated correlation (ρ) of the model.

RESULTS

Prediction models trained on multi-modal data outperformed the models trained on single modal data in predicting future ADAS-cog scores (MAE12, 24 & 36 months= 4.1, 4.5, and 5.0, ρ12, 24 & 36 months= 0.88, 0.82, and 0.75). Including baseline ADAS-cog scores to prediction models improved predictive performance (MAE12, 24 & 36 months= 3.5, 3.7, and 4.6, ρ12, 24 & 36 months= 0.89, 0.87, and 0.80).

CONCLUSION

Future ADAS-cog scores were predicted which could aid clinicians in identifying those at greater risk of decline and apply interventions at an earlier disease stage and inform likely future disease progression in individuals enrolled in AD clinical trials.

摘要

背景

在个体的连续尺度上,如阿尔茨海默病评估量表认知(ADAS-cog)评分,对阿尔茨海默病(AD)的进展进行定量预测,对于个性化方法是有信息意义的,而不是将个体定性地归类为广泛的疾病类别。

目的

评估多模态数据和预测学习模型是否可用于未来预测 ADAS-cog 评分的假设。

方法

使用单模态和多模态回归模型,对包含人口统计学、神经影像学和基于脑脊液的标志物以及遗传因素的基线数据进行训练,以预测未来 12、24 和 36 个月的 ADAS-cog 评分。我们对预测模型进行了重复交叉验证,并评估了模型的平均绝对误差(MAE)和交叉验证相关系数(ρ)。

结果

多模态数据训练的预测模型在预测未来 ADAS-cog 评分方面优于单模态数据训练的模型(MAE12、24 和 36 个月=4.1、4.5 和 5.0,ρ12、24 和 36 个月=0.88、0.82 和 0.75)。将基线 ADAS-cog 评分纳入预测模型可提高预测性能(MAE12、24 和 36 个月=3.5、3.7 和 4.6,ρ12、24 和 36 个月=0.89、0.87 和 0.80)。

结论

对未来的 ADAS-cog 评分进行了预测,这可以帮助临床医生识别那些更有可能下降的患者,并在疾病早期阶段应用干预措施,并告知在 AD 临床试验中入组的个体的未来疾病进展情况。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验