Center for Evolutionary Medicine and Informatics, The Biodesign Institute, ASU, Tempe, AZ 85287, USA.
Neuroimage. 2013 Sep;78:233-48. doi: 10.1016/j.neuroimage.2013.03.073. Epub 2013 Apr 12.
Alzheimer's disease (AD), the most common type of dementia, is a severe neurodegenerative disorder. Identifying biomarkers that can track the progress of the disease has recently received increasing attentions in AD research. An accurate prediction of disease progression would facilitate optimal decision-making for clinicians and patients. A definitive diagnosis of AD requires autopsy confirmation, thus many clinical/cognitive measures including Mini Mental State Examination (MMSE) and Alzheimer's Disease Assessment Scale cognitive subscale (ADAS-Cog) have been designed to evaluate the cognitive status of the patients and used as important criteria for clinical diagnosis of probable AD. In this paper, we consider the problem of predicting disease progression measured by the cognitive scores and selecting biomarkers predictive of the progression. Specifically, we formulate the prediction problem as a multi-task regression problem by considering the prediction at each time point as a task and propose two novel multi-task learning formulations. We have performed extensive experiments using data from the Alzheimer's Disease Neuroimaging Initiative (ADNI). Specifically, we use the baseline MRI features to predict MMSE/ADAS-Cog scores in the next 4 years. Results demonstrate the effectiveness of the proposed multi-task learning formulations for disease progression in comparison with single-task learning algorithms including ridge regression and Lasso. We also perform longitudinal stability selection to identify and analyze the temporal patterns of biomarkers in disease progression. We observe that cortical thickness average of left middle temporal, cortical thickness average of left and right Entorhinal, and white matter volume of left Hippocampus play significant roles in predicting ADAS-Cog at all time points. We also observe that several MRI biomarkers provide significant information for predicting MMSE scores for the first 2 years, however very few are shown to be significant in predicting MMSE score at later stages. The lack of predictable MRI biomarkers in later stages may contribute to the lower prediction performance of MMSE than that of ADAS-Cog in our study and other related studies.
阿尔茨海默病(AD)是最常见的痴呆症类型,是一种严重的神经退行性疾病。最近,人们越来越关注能够追踪疾病进展的生物标志物,以用于 AD 研究。对疾病进展进行准确预测有助于临床医生和患者做出最佳决策。AD 的明确诊断需要尸检证实,因此许多临床/认知测量方法,包括简易精神状态检查(MMSE)和阿尔茨海默病评估量表认知子量表(ADAS-Cog),被设计用于评估患者的认知状态,并作为临床诊断可能 AD 的重要标准。在本文中,我们考虑了通过认知评分来预测疾病进展并选择具有预测进展能力的生物标志物的问题。具体来说,我们通过考虑每个时间点的预测作为一项任务,将预测问题表述为一个多任务回归问题,并提出了两种新的多任务学习公式。我们使用来自阿尔茨海默病神经影像学倡议(ADNI)的数据进行了广泛的实验。具体来说,我们使用基线 MRI 特征来预测接下来 4 年内的 MMSE/ADAS-Cog 评分。结果表明,与包括岭回归和 Lasso 在内的单任务学习算法相比,所提出的多任务学习公式在疾病进展预测方面具有有效性。我们还进行了纵向稳定性选择,以识别和分析疾病进展中生物标志物的时间模式。我们观察到,左侧颞中皮质厚度平均值、左侧和右侧内嗅皮质厚度平均值以及左侧海马白质体积在所有时间点对 ADAS-Cog 的预测都具有重要作用。我们还观察到,一些 MRI 生物标志物在头 2 年对预测 MMSE 评分提供了重要信息,但在预测后期 MMSE 评分时,很少有生物标志物显示出显著作用。在我们的研究和其他相关研究中,后期缺乏可预测的 MRI 生物标志物可能导致 MMSE 的预测性能低于 ADAS-Cog。