Suppr超能文献

贝叶斯数据分析:一种解决功效问题和零假设解释的新方法。

Bayesian Data Analysis: A Fresh Approach to Power Issues and Null Hypothesis Interpretation.

机构信息

Department of Psychology and Institute for Neuroscience, Northwestern University, Evanston, IL, USA.

出版信息

Appl Psychophysiol Biofeedback. 2021 Jun;46(2):135-140. doi: 10.1007/s10484-020-09502-y. Epub 2021 Jan 18.

Abstract

One of the first things one learns in a basic psychology or statistics course is that you cannot prove the null hypothesis that there is no difference between two conditions such as a patient group and a normal control group. This remains true. However now, thanks to ongoing progress by a special group of devoted methodologists, even when the result of an inferential test is p > .05, it is now possible to rigorously and quantitatively conclude that (a) the null hypothesis is actually unlikely, and (b) that the alternative hypothesis of an actual difference between treatment and control is more probable than the null. Alternatively, it is also possible to conclude quantitatively that the null hypothesis is much more likely than the alternative. Without Bayesian statistics, we couldn't say anything if a simple inferential analysis like a t-test yielded p > .05. The present, mostly non-quantitative article describes free resources and illustrative procedures for doing Bayesian analysis, with t-test and ANOVA examples.

摘要

在基础心理学或统计学课程中,人们首先学到的一件事就是,您无法证明两个条件(例如患者组和正常对照组)之间没有差异的零假设。这仍然是正确的。然而,现在,由于一群专门的方法学家的持续努力,即使推断性检验的结果为 p > 0.05,现在也可以严格和定量地得出结论:(a) 零假设实际上不太可能,并且 (b) 治疗和对照之间实际存在差异的替代假设比零假设更有可能。或者,也可以定量得出结论,零假设比替代假设更有可能。如果简单的推断分析(如 t 检验)产生 p > 0.05,那么没有贝叶斯统计学,我们就无法说任何话。本文主要是非定量的,介绍了进行贝叶斯分析的免费资源和说明性程序,以及 t 检验和 ANOVA 的示例。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验