Suppr超能文献

原核生物隐秘启动子解释了细菌中重组神经元钠离子通道的不稳定性。

Cryptic prokaryotic promoters explain instability of recombinant neuronal sodium channels in bacteria.

机构信息

Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA.

Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA.

出版信息

J Biol Chem. 2021 Jan-Jun;296:100298. doi: 10.1016/j.jbc.2021.100298. Epub 2021 Jan 15.

Abstract

Mutations in genes encoding the human-brain-expressed voltage-gated sodium (Na) channels Na1.1, Na1.2, and Na1.6 are associated with a variety of human diseases including epilepsy, autism spectrum disorder, familial migraine, and other neurodevelopmental disorders. A major obstacle hindering investigations of the functional consequences of brain Na channel mutations is an unexplained instability of the corresponding recombinant complementary DNA (cDNA) when propagated in commonly used bacterial strains manifested by high spontaneous rates of mutation. Here, using a combination of in silico analysis, random and site-directed mutagenesis, we investigated the cause for instability of human Na1.1 cDNA. We identified nucleotide sequences within the Na1.1 coding region that resemble prokaryotic promoter-like elements, which are presumed to drive transcription of translationally toxic mRNAs in bacteria as the cause of the instability. We further demonstrated that mutations disrupting these elements mitigate the instability. Extending these observations, we generated full-length human Na1.1, Na1.2, and Na1.6 plasmids using one or two introns that interrupt the latent reading frames along with a minimum number of silent nucleotide changes that achieved stable propagation in bacteria. Expression of the stabilized sequences in cultured mammalian cells resulted in functional Na channels with properties that matched their parental constructs. Our findings explain a widely observed instability of recombinant neuronal human Na channels, and we describe re-engineered plasmids that attenuate this problem.

摘要

编码人脑表达电压门控钠 (Na) 通道 Na1.1、Na1.2 和 Na1.6 的基因突变与多种人类疾病有关,包括癫痫、自闭症谱系障碍、家族性偏头痛和其他神经发育障碍。阻碍对脑 Na 通道突变功能后果进行研究的一个主要障碍是,当在常用细菌菌株中传播时,相应的重组互补 DNA (cDNA) 存在未解释的不稳定性,表现为自发突变率高。在这里,我们使用计算机分析、随机和定点诱变的组合,研究了人 Na1.1 cDNA 不稳定性的原因。我们在 Na1.1 编码区中鉴定了类似于原核启动子样元件的核苷酸序列,这些元件被认为是导致细菌中转录翻译毒性 mRNA 的原因,从而导致不稳定性。我们进一步证明,破坏这些元件的突变减轻了不稳定性。扩展这些观察结果,我们使用一个或两个内含子生成全长人 Na1.1、Na1.2 和 Na1.6 质粒,这些内含子打断潜在的阅读框,并尽可能减少沉默核苷酸变化,以在细菌中实现稳定传播。在培养的哺乳动物细胞中表达稳定的序列会产生具有与其亲本构建体匹配特性的功能性 Na 通道。我们的发现解释了重组神经元人 Na 通道普遍存在的不稳定性,我们还描述了减轻该问题的重新设计的质粒。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/95bb/7948969/7f374b7c4437/gr1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验