Suppr超能文献

纳入有载精子胞内 pH 值的机器学习算法可预测正常精子患者常规体外受精的成功。

Machine-learning algorithm incorporating capacitated sperm intracellular pH predicts conventional in vitro fertilization success in normospermic patients.

机构信息

Department of OB/GYN, Washington University School of Medicine, Saint Louis, Missouri.

Instituto de Biología y Medicina Experimental, CONICET, Buenos Aires, Argentina.

出版信息

Fertil Steril. 2021 Apr;115(4):930-939. doi: 10.1016/j.fertnstert.2020.10.038. Epub 2021 Jan 15.

Abstract

OBJECTIVE

To measure human sperm intracellular pH (pH) and develop a machine-learning algorithm to predict successful conventional in vitro fertilization (IVF) in normospermic patients.

DESIGN

Spermatozoa from 76 IVF patients were capacitated in vitro. Flow cytometry was used to measure sperm pH, and computer-assisted semen analysis was used to measure hyperactivated motility. A gradient-boosted machine-learning algorithm was trained on clinical data and sperm pH and membrane potential from 58 patients to predict successful conventional IVF, defined as a fertilization ratio (number of fertilized oocytes [2 pronuclei]/number of mature oocytes) greater than 0.66. The algorithm was validated on an independent set of data from 18 patients.

SETTING

Academic medical center.

PATIENT(S): Normospermic men undergoing IVF. Patients were excluded if they used frozen sperm, had known male factor infertility, or used intracytoplasmic sperm injection only.

INTERVENTION(S): None.

MAIN OUTCOME MEASURE(S): Successful conventional IVF.

RESULT(S): Sperm pH positively correlated with hyperactivated motility and with conventional IVF ratio (n = 76) but not with intracytoplasmic sperm injection fertilization ratio (n = 38). In receiver operating curve analysis of data from the test set (n = 58), the machine-learning algorithm predicted successful conventional IVF with a mean accuracy of 0.72 (n = 18), a mean area under the curve of 0.81, a mean sensitivity of 0.65, and a mean specificity of 0.80.

CONCLUSION(S): Sperm pH correlates with conventional fertilization outcomes in normospermic patients undergoing IVF. A machine-learning algorithm can use clinical parameters and markers of capacitation to accurately predict successful fertilization in normospermic men undergoing conventional IVF.

摘要

目的

测量人类精子细胞内 pH 值(pH),并开发一种机器学习算法来预测正常精子患者的常规体外受精(IVF)成功。

设计

76 名 IVF 患者的精子在体外获能。使用流式细胞术测量精子 pH 值,使用计算机辅助精液分析测量超激活运动。使用 58 名患者的临床数据和精子 pH 值和膜电位,对梯度提升机的机器学习算法进行训练,以预测常规 IVF 的成功,定义为受精率(受精卵的数量[2 原核]/成熟卵的数量)大于 0.66。该算法在 18 名患者的独立数据集上进行了验证。

地点

学术医疗中心。

患者

接受 IVF 的正常精子男性。如果患者使用冷冻精子、已知男性因素不孕或仅使用胞浆内精子注射,则将其排除在外。

干预措施

无。

主要观察指标

常规 IVF 的成功。

结果

精子 pH 值与超激活运动和常规 IVF 比率(n = 76)呈正相关,但与胞浆内精子注射受精率(n = 38)无关。在测试集(n = 58)数据的接收者操作曲线分析中,机器学习算法预测常规 IVF 成功的平均准确率为 0.72(n = 18),平均曲线下面积为 0.81,平均灵敏度为 0.65,平均特异性为 0.80。

结论

精子 pH 值与接受 IVF 的正常精子患者的常规受精结果相关。机器学习算法可以使用临床参数和获能标志物准确预测接受常规 IVF 的正常精子男性的受精成功。

相似文献

6
Sperm DNA damage measured by the alkaline Comet assay as an independent predictor of male infertility and in vitro fertilization success.
Fertil Steril. 2011 Feb;95(2):652-7. doi: 10.1016/j.fertnstert.2010.08.019. Epub 2010 Sep 22.
10
The effect of sperm parameters on the outcome of intracytoplasmic sperm injection.
Fertil Steril. 1995 Nov;64(5):982-6. doi: 10.1016/s0015-0282(16)57914-x.

引用本文的文献

1
Artificial intelligence (AI) approaches to male infertility in IVF: a mapping review.
Eur J Med Res. 2025 Apr 5;30(1):246. doi: 10.1186/s40001-025-02479-6.
2
Cytosolic and Acrosomal pH Regulation in Mammalian Sperm.
Cells. 2024 May 17;13(10):865. doi: 10.3390/cells13100865.
3
Predicting Male Infertility Using Artificial Neural Networks: A Review of the Literature.
Healthcare (Basel). 2024 Apr 3;12(7):781. doi: 10.3390/healthcare12070781.
4
Na/H Exchangers (NHEs) in Mammalian Sperm: Essential Contributors to Male Fertility.
Int J Mol Sci. 2023 Oct 7;24(19):14981. doi: 10.3390/ijms241914981.
5
Common as well as unique methylation-sensitive DNA regulatory elements in three mammalian SLC9C1 genes.
Gene. 2024 Jan 30;893:147897. doi: 10.1016/j.gene.2023.147897. Epub 2023 Oct 11.
6
SLO3: A Conserved Regulator of Sperm Membrane Potential.
Int J Mol Sci. 2023 Jul 7;24(13):11205. doi: 10.3390/ijms241311205.
7
Artificial Intelligence in Andrology: From Semen Analysis to Image Diagnostics.
World J Mens Health. 2024 Jan;42(1):39-61. doi: 10.5534/wjmh.230050. Epub 2023 Jun 15.
8
Live-Birth Prediction of Natural-Cycle Fertilization Using 57,558 Linked Cycle Records: A Machine Learning Perspective.
Front Endocrinol (Lausanne). 2022 Apr 22;13:838087. doi: 10.3389/fendo.2022.838087. eCollection 2022.
9
What advances may the future bring to the diagnosis, treatment, and care of male sexual and reproductive health?
Fertil Steril. 2022 Feb;117(2):258-267. doi: 10.1016/j.fertnstert.2021.12.013.

本文引用的文献

1
Intracytoplasmic sperm injection (ICSI) for non-male factor indications: a committee opinion.
Fertil Steril. 2020 Aug;114(2):239-245. doi: 10.1016/j.fertnstert.2020.05.032. Epub 2020 Jul 9.
2
Membrane Potential Determined by Flow Cytometry Predicts Fertilizing Ability of Human Sperm.
Front Cell Dev Biol. 2020 Jan 21;7:387. doi: 10.3389/fcell.2019.00387. eCollection 2019.
3
Membrane Potential Assessment by Fluorimetry as a Predictor Tool of Human Sperm Fertilizing Capacity.
Front Cell Dev Biol. 2020 Jan 17;7:383. doi: 10.3389/fcell.2019.00383. eCollection 2019.
4
Quantitative Intracellular pH Determinations in Single Live Mammalian Spermatozoa Using the Ratiometric Dye SNARF-5F.
Front Cell Dev Biol. 2020 Jan 17;7:366. doi: 10.3389/fcell.2019.00366. eCollection 2019.
6
The Vienna consensus: report of an expert meeting on the development of art laboratory performance indicators.
Hum Reprod Open. 2017 Aug 4;2017(2):hox011. doi: 10.1093/hropen/hox011. eCollection 2017.
7
Dual Sensing of Physiologic pH and Calcium by EFCAB9 Regulates Sperm Motility.
Cell. 2019 May 30;177(6):1480-1494.e19. doi: 10.1016/j.cell.2019.03.047. Epub 2019 May 2.
8
Tyrosine phosphorylation signaling regulates Ca entry by affecting intracellular pH during human sperm capacitation.
J Cell Physiol. 2019 Apr;234(4):5276-5288. doi: 10.1002/jcp.27337. Epub 2018 Sep 10.
9
Cap-Score™ prospectively predicts probability of pregnancy.
Mol Reprod Dev. 2018 Aug;85(8-9):654-664. doi: 10.1002/mrd.23057. Epub 2018 Sep 25.
10
Molecular Basis of Human Sperm Capacitation.
Front Cell Dev Biol. 2018 Jul 27;6:72. doi: 10.3389/fcell.2018.00072. eCollection 2018.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验