Department of OB/GYN, Washington University School of Medicine, Saint Louis, Missouri.
Instituto de Biología y Medicina Experimental, CONICET, Buenos Aires, Argentina.
Fertil Steril. 2021 Apr;115(4):930-939. doi: 10.1016/j.fertnstert.2020.10.038. Epub 2021 Jan 15.
To measure human sperm intracellular pH (pH) and develop a machine-learning algorithm to predict successful conventional in vitro fertilization (IVF) in normospermic patients.
Spermatozoa from 76 IVF patients were capacitated in vitro. Flow cytometry was used to measure sperm pH, and computer-assisted semen analysis was used to measure hyperactivated motility. A gradient-boosted machine-learning algorithm was trained on clinical data and sperm pH and membrane potential from 58 patients to predict successful conventional IVF, defined as a fertilization ratio (number of fertilized oocytes [2 pronuclei]/number of mature oocytes) greater than 0.66. The algorithm was validated on an independent set of data from 18 patients.
Academic medical center.
PATIENT(S): Normospermic men undergoing IVF. Patients were excluded if they used frozen sperm, had known male factor infertility, or used intracytoplasmic sperm injection only.
INTERVENTION(S): None.
MAIN OUTCOME MEASURE(S): Successful conventional IVF.
RESULT(S): Sperm pH positively correlated with hyperactivated motility and with conventional IVF ratio (n = 76) but not with intracytoplasmic sperm injection fertilization ratio (n = 38). In receiver operating curve analysis of data from the test set (n = 58), the machine-learning algorithm predicted successful conventional IVF with a mean accuracy of 0.72 (n = 18), a mean area under the curve of 0.81, a mean sensitivity of 0.65, and a mean specificity of 0.80.
CONCLUSION(S): Sperm pH correlates with conventional fertilization outcomes in normospermic patients undergoing IVF. A machine-learning algorithm can use clinical parameters and markers of capacitation to accurately predict successful fertilization in normospermic men undergoing conventional IVF.
测量人类精子细胞内 pH 值(pH),并开发一种机器学习算法来预测正常精子患者的常规体外受精(IVF)成功。
76 名 IVF 患者的精子在体外获能。使用流式细胞术测量精子 pH 值,使用计算机辅助精液分析测量超激活运动。使用 58 名患者的临床数据和精子 pH 值和膜电位,对梯度提升机的机器学习算法进行训练,以预测常规 IVF 的成功,定义为受精率(受精卵的数量[2 原核]/成熟卵的数量)大于 0.66。该算法在 18 名患者的独立数据集上进行了验证。
学术医疗中心。
接受 IVF 的正常精子男性。如果患者使用冷冻精子、已知男性因素不孕或仅使用胞浆内精子注射,则将其排除在外。
无。
常规 IVF 的成功。
精子 pH 值与超激活运动和常规 IVF 比率(n = 76)呈正相关,但与胞浆内精子注射受精率(n = 38)无关。在测试集(n = 58)数据的接收者操作曲线分析中,机器学习算法预测常规 IVF 成功的平均准确率为 0.72(n = 18),平均曲线下面积为 0.81,平均灵敏度为 0.65,平均特异性为 0.80。
精子 pH 值与接受 IVF 的正常精子患者的常规受精结果相关。机器学习算法可以使用临床参数和获能标志物准确预测接受常规 IVF 的正常精子男性的受精成功。