Medical School of Nanjing University, Nanjing, China.
College of Computer and Information, Hohai University, Nanjing, China.
Front Endocrinol (Lausanne). 2022 Apr 22;13:838087. doi: 10.3389/fendo.2022.838087. eCollection 2022.
Natural-cycle fertilization (NC-IVF) is an fertilization (IVF) cycle without gonadotropins or any other stimulation of follicular growth. Previous studies on live-birth prediction of NC-IVF were very few; the sample size was very limited. This study aims to construct a machine learning model to predict live-birth occurrence of NC-IVF using 57,558 linked cycle records and help clinicians develop treatment strategies.
The dataset contained 57,558 anonymized register patient records undergoing NC-IVF cycles from 2005 to 2016 filtered from 7bsp;60,732 records in the Human Fertilisation and Embryology Authority (HFEA) data. We selected matching records and features through data filtering and feature selection methods. Two groups of twelve machine learning models were trained and tested. Eight metrics, e.g., F1 score, Matthews correlation coefficient (MCC), the area under the receiver operating characteristic curve (AUC), etc., were computed to evaluate the performance of each model.
Two groups of twelve models were trained and tested. The artificial neural network (ANN) model performed the best in the machine learning group (F1 score, 70.87%; MCC, 50.37%; and AUC score, 0.7939). The LogitBoost model obtained the best scores in the ensemble learning group (F1 score, 70.57%; MCC, 50.75%; and AUC score, 0.7907). After the comparison between the two models, the LogitBoost model was recognized as an optimal one.
In this study, NC-IVF-related datasets were extracted from the HFEA data, and a machine learning-based prediction model was successfully constructed through this largest NC-IVF dataset currently. This model is universal and stable, which can help clinicians predict the live-birth success rate of NC-IVF in advance before developing IVF treatment strategies and then choose the best benefit treatment strategy according to the patients' wishes. As "use less stimulation and back to natural condition" becomes more and more popular, this model is more meaningful in the decision-making assistance system for IVF.
自然周期受精(NC-IVF)是一种无需促性腺激素或任何其他卵泡生长刺激的受精(IVF)周期。之前关于 NC-IVF 活产预测的研究很少;样本量非常有限。本研究旨在构建一个机器学习模型,使用 57558 个链接周期记录来预测 NC-IVF 的活产发生,并帮助临床医生制定治疗策略。
该数据集包含了 57558 份匿名登记患者记录,这些记录是从人类受精和胚胎管理局(HFEA)数据库中的 7bsp;60732 条记录中筛选出来的,这些记录是在 2005 年至 2016 年期间进行的 NC-IVF 周期。我们通过数据过滤和特征选择方法选择了匹配的记录和特征。两组 12 个机器学习模型进行了训练和测试。计算了 8 个指标,如 F1 分数、马修斯相关系数(MCC)、接收器工作特征曲线下的面积(AUC)等,以评估每个模型的性能。
两组 12 个模型进行了训练和测试。在机器学习组中,人工神经网络(ANN)模型表现最好(F1 分数为 70.87%,MCC 为 50.37%,AUC 分数为 0.7939)。在集成学习组中,LogitBoost 模型获得了最佳分数(F1 分数为 70.57%,MCC 为 50.75%,AUC 分数为 0.7907)。在比较这两个模型之后,LogitBoost 模型被认为是最优的模型。
在这项研究中,从 HFEA 数据中提取了与 NC-IVF 相关的数据集,并通过目前最大的 NC-IVF 数据集成功构建了基于机器学习的预测模型。该模型具有普遍性和稳定性,可帮助临床医生在制定 IVF 治疗策略之前提前预测 NC-IVF 的活产成功率,然后根据患者的意愿选择最佳的获益治疗策略。随着“少刺激、回归自然状态”的理念越来越流行,该模型在 IVF 决策支持系统中更具意义。