Department of Bioengineering, University of Illinois at Chicago, 851 South Morgan Street, Chicago, Illinois 60607, United States.
Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, 842 West Taylor Street, Chicago, Illinois 60607, United States.
ACS Biomater Sci Eng. 2020 May 11;6(5):3208-3216. doi: 10.1021/acsbiomaterials.9b01889. Epub 2020 Apr 28.
Ferritin biomineralization is essential to regulate the toxic Fe iron ions in the human body. Unravelling the mechanism of biomineralization in ferritin facilitates our understanding of the causes underlying many iron disorder-related diseases. Until now, no report of in situ visualization of ferritin biomineralization events at nanoscale exists due to the requirement for high-resolution imaging of nanometer-sized ferritin proteins in their hydrated states. Herein, for the first time, we show that the biomineralization processes within individual ferritin proteins can be visualized by means of graphene liquid cell-transmission electron microscopy (GLC-TEM). The increase in the ratio of Fe/Fe ions over time monitored via electron energy loss spectroscopy (EELS) reveals the change in oxidation state of iron oxide phases with time. This study lays a foundation for future investigations on iron regulation mechanisms in healthy and dysfunctional ferritins.
铁蛋白的生物矿化对于调节人体内有毒的 Fe 离子至关重要。阐明铁蛋白的生物矿化机制有助于我们了解许多与铁代谢紊乱相关疾病的根本原因。到目前为止,由于需要对水合状态下纳米级铁蛋白进行高分辨率成像,因此还没有关于铁蛋白生物矿化事件在纳米尺度原位可视化的报道。在此,我们首次通过石墨烯液相传输电子显微镜(GLC-TEM)显示了单个铁蛋白内的生物矿化过程。通过电子能量损失光谱(EELS)监测到的 Fe/Fe 离子比值随时间的增加,揭示了铁氧化物相的氧化态随时间的变化。这项研究为未来研究健康和功能失调的铁蛋白中的铁调节机制奠定了基础。