Suppr超能文献

具有取向的微纳分级结构的微流控丝纤维。

Microfluidic Silk Fibers with Aligned Hierarchical Microstructures.

机构信息

Department of Burns and Plastic Surgery, The Affiliated Hospital of Jiangnan University, Wuxi 214041, China.

College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.

出版信息

ACS Biomater Sci Eng. 2020 May 11;6(5):2847-2854. doi: 10.1021/acsbiomaterials.0c00060. Epub 2020 Apr 23.

Abstract

The hierarchical structure of the ECM provides specific niches for tissues to regulate cell behavior, yet the challenge remains to design biomaterial systems for tissue regeneration to recreate such features in vitro. Here, we achieved this goal through the use of aligned hierarchical structures of native silk fibers, generated through the integration of "bottom-up" and "top-down" strategies to generate regenerated silk fibers with aligned nano- to micro-hierarchical structures. To achieve these designs, we assembled and dispersed silk nanofibers (SNF) in formic acid and spun them into fibers using bioinspired microfluidic chips with a geometry mimicking the native silk gland. The fibers generated using this device exhibited aligned hierarchical structure with fiber mechanical properties superior to fibers derived from more traditional spinning approaches with regenerated silk solutions. Besides the improved mechanical properties, Raman spectroscopic results indicated similarly aligned structures to native fibers and active control of cell proliferation, migration, and aggregate orientation. The results indicate the feasibility of developing bioactive silk fiber materials with hierarchical structures to facilitate utility in a range of cell and tissue regeneration scenarios.

摘要

细胞外基质的层次结构为组织调节细胞行为提供了特定的小生境,但仍然需要设计用于组织再生的生物材料系统,以在体外重现这些特征。在这里,我们通过使用天然丝纤维的对齐层次结构来实现这一目标,该结构是通过整合“自下而上”和“自上而下”的策略来生成具有对齐纳米到微层次结构的再生丝纤维而产生的。为了实现这些设计,我们将丝纳米纤维(SNF)组装并分散在甲酸中,并使用仿生微流控芯片将其纺成纤维,该芯片的几何形状模仿了天然丝腺。使用该装置生成的纤维具有对齐的层次结构,纤维机械性能优于使用再生丝溶液的更传统纺丝方法衍生的纤维。除了改善机械性能外,拉曼光谱结果表明,纤维具有类似的天然纤维对齐结构,并能主动控制细胞增殖、迁移和聚集方向。结果表明,开发具有层次结构的生物活性丝纤维材料以促进在一系列细胞和组织再生场景中的应用是可行的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验