Suppr超能文献

微流体辅助纤维生产:潜力、局限性与前景。

Microfluidic-assisted fiber production: Potentials, limitations, and prospects.

作者信息

Abrishamkar Afshin, Nilghaz Azadeh, Saadatmand Maryam, Naeimirad Mohammadreza, deMello Andrew J

机构信息

Institute for Frontier Materials, Deakin University, Waurn Ponds, Victoria 3216, Australia.

Department of Chemical and Petroleum Engineering, Sharif University of Technology, 11155-9465 Tehran, Iran.

出版信息

Biomicrofluidics. 2022 Nov 17;16(6):061504. doi: 10.1063/5.0129108. eCollection 2022 Dec.

Abstract

Besides the conventional fiber production methods, microfluidics has emerged as a promising approach for the engineered spinning of fibrous materials and offers excellent potential for fiber manufacturing in a controlled and straightforward manner. This method facilitates low-speed prototype synthesis of fibers for diverse applications while providing superior control over reaction conditions, efficient use of precursor solutions, reagent mixing, and process parameters. This article reviews recent advances in microfluidic technology for the fabrication of fibrous materials with different morphologies and a variety of properties aimed at various applications. First, the basic principles, as well as the latest developments and achievements of microfluidic-based techniques for fiber production, are introduced. Specifically, microfluidic platforms made of glass, polymers, and/or metals, including but not limited to microfluidic chips, capillary-based devices, and three-dimensional printed devices are summarized. Then, fiber production from various materials, such as alginate, gelatin, silk, collagen, and chitosan, using different microfluidic platforms with a broad range of cross-linking agents and mechanisms is described. Therefore, microfluidic spun fibers with diverse diameters ranging from submicrometer scales to hundreds of micrometers and structures, such as cylindrical, hollow, grooved, flat, core-shell, heterogeneous, helical, and peapod-like morphologies, with tunable sizes and mechanical properties are discussed in detail. Subsequently, the practical applications of microfluidic spun fibers are highlighted in sensors for biomedical or optical purposes, scaffolds for culture or encapsulation of cells in tissue engineering, and drug delivery. Finally, different limitations and challenges of the current microfluidic technologies, as well as the future perspectives and concluding remarks, are presented.

摘要

除了传统的纤维生产方法外,微流控技术已成为一种有前景的纤维材料工程纺丝方法,并且以可控且直接的方式为纤维制造提供了巨大潜力。该方法有助于低速合成用于各种应用的纤维原型,同时能更好地控制反应条件、高效利用前驱体溶液、实现试剂混合以及控制工艺参数。本文综述了微流控技术在制造具有不同形态和多种性能以用于各种应用的纤维材料方面的最新进展。首先,介绍了基于微流控的纤维生产技术的基本原理以及最新发展和成果。具体而言,总结了由玻璃、聚合物和/或金属制成的微流控平台,包括但不限于微流控芯片、基于毛细管的装置和三维打印装置。然后,描述了使用各种微流控平台,通过广泛的交联剂和交联机制,由藻酸盐、明胶、丝绸、胶原蛋白和壳聚糖等各种材料生产纤维的情况。因此,详细讨论了直径范围从亚微米级到数百微米、具有多种结构(如圆柱形、中空、带凹槽、扁平、核壳、异质、螺旋和豆荚状形态)且尺寸和机械性能可调的微流控纺丝纤维。随后,重点介绍了微流控纺丝纤维在生物医学或光学用途的传感器、组织工程中用于细胞培养或封装的支架以及药物递送方面的实际应用。最后,阐述了当前微流控技术的不同局限性和挑战,以及未来展望和总结。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/acb2/9674390/a706ef574afc/BIOMGB-000016-061504_1-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验