Milocco Francesca, de Vries Folkert, Siebe Harmke S, Engbers Silène, Demeshko Serhiy, Meyer Franc, Otten Edwin
Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands.
Institut für Anorganische Chemie, Universität Göttingen, Tammannstraße 4, 37077 Göttingen, Germany.
Inorg Chem. 2021 Feb 1;60(3):2045-2055. doi: 10.1021/acs.inorgchem.0c03593. Epub 2021 Jan 19.
Bis(formazanate)iron(II) complexes undergo a thermally induced = 0 to = 2 spin transition in solution. Here we present a study of how steric effects and π-stacking interactions between the triarylformazanate ligands affect the spin-crossover behavior, in addition to electronic substituent effects. Moreover, the effect of increasing the denticity of the formazanate ligands is explored by including additional OMe donors in the ligand (). In total, six new compounds (-) have been synthesized and characterized, both in solution and in the solid state, via spectroscopic, magnetic, and structural analyses. The series spans a broad range of spin-crossover temperatures () for the LS ⇌ HS equilibrium in solution, with the exception of compound which remains high-spin ( = 2) down to 210 K. In the solid state, was shown to exist in two distinct forms: a tetrahedral high-spin complex (, = 2) and a rare square-planar structure with an intermediate-spin state (, = 1). SQUID measurements, Fe Mössbauer spectroscopy, and differential scanning calorimetry indicate that in the solid state the square-planar form undergoes an incomplete spin-change-coupled isomerization to tetrahedral . The complex that contains additional OMe donors () results in a six-coordinate (NNO)Fe coordination geometry, which shifts the spin-crossover to significantly higher temperatures ( = 444 K). The available experimental and computational data for suggest that the Fe···OMe interaction is retained upon spin-crossover. Despite the difference in coordination environment, the weak OMe donors do not significantly alter the electronic structure or ligand-field splitting, and the occurrence of spin-crossover (similar to the compounds lacking the OMe groups) originates from a large degree of metal-ligand π-covalency.
双(甲脒基)铁(II)配合物在溶液中会发生热诱导的自旋从S = 0到S = 2的转变。除了电子取代基效应外,本文还研究了三芳基甲脒基配体之间的空间效应和π-堆积相互作用如何影响自旋交叉行为。此外,通过在配体中引入额外的OMe供体()来探索增加甲脒基配体齿数的影响。总共合成并通过光谱、磁性和结构分析对六种新化合物(-)在溶液和固态下进行了表征。该系列化合物在溶液中对于LS⇌HS平衡具有广泛的自旋交叉温度(),除了化合物在低至210 K时仍保持高自旋(S = 2)。在固态下,显示存在两种不同的形式:四面体高自旋配合物(,S = 2)和具有中间自旋态(,S = 1)的罕见平面正方形结构。超导量子干涉仪测量、铁穆斯堡尔光谱和差示扫描量热法表明,在固态下平面正方形形式会发生不完全的自旋变化耦合异构化转变为四面体形式。含有额外OMe供体的配合物()导致六配位(NNO)Fe配位几何结构,这将自旋交叉温度显著提高到( = 444 K)。关于的现有实验和计算数据表明,在自旋交叉过程中Fe···OMe相互作用得以保留。尽管配位环境存在差异,但弱OMe供体并未显著改变电子结构或配体场分裂,自旋交叉的发生(类似于不含OMe基团的化合物)在很大程度上源于金属-配体π-共价性。