Médecine Intensive-Réanimation, Hospices Civils de Lyon, Groupement Hospitalier Centre, Hôpital Edouard Herriot, Lyon, France.
Faculté de Médecine Lyon-Est, Université de Lyon, Lyon, France.
PLoS One. 2021 Jan 19;16(1):e0245578. doi: 10.1371/journal.pone.0245578. eCollection 2021.
COVID-19 pandemic sets the healthcare system to a shortage of ventilators. We aimed at assessing tidal volume (VT) delivery and air recirculation during expiration when one ventilator is divided into 2 test-lungs. The study was performed in a research laboratory in a medical ICU of a University hospital. An ICU (V500) and a lower-level ventilator (Elisée 350) were attached to two test-lungs (QuickLung) through a dedicated flow-splitter. A 50 mL/cmH2O Compliance (C) and 5 cmH2O/L/s Resistance (R) were set in both A and B test-lungs (A C50R5 / B C50R5, step1), A C50-R20 / B C20-R20 (step 2), A C20-R20 / B C10-R20 (step 3), and A C50-R20 / B C20-R5 (step 4). Each ventilator was set in volume and pressure control mode to deliver 800mL VT. We assessed VT from a pneumotachograph placed immediately before each lung, pendelluft air, and expiratory resistance (circuit and valve). Values are median (1st-3rd quartiles) and compared between ventilators by non-parametric tests. Between Elisée 350 and V500 in volume control VT in A/B test- lungs were 381/387 vs. 412/433 mL in step 1, 501/270 vs. 492/370 mL in step 2, 509/237 vs. 496/332 mL in step 3, and 496/281 vs. 480/329 mL in step 4. In pressure control the corresponding values were 373/336 vs. 430/414 mL, 416/185 vs. 322/234 mL, 193/108 vs. 176/ 92 mL and 422/201 vs. 481/329mL, respectively (P<0.001 between ventilators at each step for each volume). Pendelluft air volume ranged between 0.7 to 37.8 ml and negatively correlated with expiratory resistance in steps 2 and 3. The lower-level ventilator performed closely to the ICU ventilator. In the clinical setting, these findings suggest that, due to dependence of VT to C, pressure control should be preferred to maintain adequate VT at least in one patient when C and/or R changes abruptly and monitoring of VT should be done carefully. Increasing expiratory resistance should reduce pendelluft volume.
新冠疫情大流行导致医疗系统呼吸机短缺。我们旨在评估当一个呼吸机被分为两个测试肺时,在呼气期间潮气量(VT)输送和空气再循环的情况。该研究在一家大学医院的 ICU 研究实验室进行。通过专用的流量分配器,将 ICU 呼吸机(V500)和较低水平的呼吸机(Elisée 350)连接到两个测试肺(QuickLung)。在两个测试肺(A C50R5 / B C50R5,步骤 1)、A C50-R20 / B C20-R20(步骤 2)、A C20-R20 / B C10-R20(步骤 3)和 A C50-R20 / B C20-R5(步骤 4)中,设定了 50 毫升/厘米 H2O 顺应性(C)和 5 厘米 H2O/L/s 阻力(R)。每个呼吸机都设置在容量和压力控制模式下,输送 800 毫升 VT。我们从每个肺前立即放置的气动计、 pendelluft 空气和呼气阻力(回路和阀)评估 VT。值为中位数(1 四分位-3 四分位),并通过非参数检验比较两种呼吸机之间的差异。在步骤 1 中,A/B 测试肺中的 Elisée 350 和 V500 中的容量控制 VT 分别为 381/387 与 412/433 毫升,在步骤 2 中,501/270 与 492/370 毫升,在步骤 3 中,509/237 与 496/332 毫升,在步骤 4 中,496/281 与 480/329 毫升。在压力控制下,相应的值分别为 373/336 与 430/414 毫升,416/185 与 322/234 毫升,193/108 与 176/92 毫升和 422/201 与 481/329 毫升(每个步骤中每种容量下呼吸机之间差异均为 P<0.001)。pendelluft 空气量在 0.7 至 37.8 毫升之间,与步骤 2 和 3 中的呼气阻力呈负相关。较低水平的呼吸机与 ICU 呼吸机性能非常接近。在临床环境中,这些发现表明,由于 VT 对 C 的依赖性,应优先选择压力控制以在 C 和/或 R 突然变化时至少在一个患者中维持足够的 VT,并且应仔细监测 VT。增加呼气阻力应减少 pendelluft 量。