Suppr超能文献

在基层医疗水平上实施用于心律失常筛查的智能移动心电图传感器:一项观察性前瞻性研究。

Implementation of a Savvy Mobile ECG Sensor for Heart Rhythm Disorder Screening at the Primary Healthcare Level: An Observational Prospective Study.

作者信息

Vodička Staša, Susič Antonija Poplas, Zelko Erika

机构信息

Healthcare Center Murska Sobota, 9000 Murska Sobota, Slovenia.

Healthcare Center Ljubljana, 1000 Ljubljana, Slovenia.

出版信息

Micromachines (Basel). 2021 Jan 5;12(1):55. doi: 10.3390/mi12010055.

Abstract

INTRODUCTION

The Jozef Stefan Institute developed a personal portable electrocardiogram (ECG) sensor Savvy that works with a smartphone, and this was used in our study. This study aimed to analyze the usefulness of telecardiology at the primary healthcare level using an ECG personal sensor.

METHODS

We included 400 patients with a history of suspected rhythm disturbance who visited their family physician at the Healthcare Center Ljubljana and Healthcare Center Murska Sobota from October 2016 to January 2018.

RESULTS

The study found that there was no statistically significant difference between the test and control groups in the number of present rhythm disorders and actions taken to treat patients with either observation or administration of a new drug. However, in the test group, there were significantly fewer patients being referred to a cardiologist than in the control group ( < 0.001).

DISCUSSION

The use of an ECG sensor helps family physicians to distinguish between patients who need to be referred to a cardiologist and those who can be treated by them. This method is useful for both physicians and patients because it shortens the time taken to start treatment, can be used during pandemics such as COVID-19, and reduces unnecessary cost.

摘要

引言

约瑟夫·施特凡研究所开发了一款可与智能手机配合使用的个人便携式心电图(ECG)传感器Savvy,本研究使用了该传感器。本研究旨在分析使用心电图个人传感器在基层医疗保健层面进行远程心脏病学的实用性。

方法

我们纳入了400名有疑似心律失常病史的患者,这些患者于2016年10月至2018年1月期间前往卢布尔雅那医疗中心和穆尔斯卡索博塔医疗中心就诊于他们的家庭医生。

结果

研究发现,在现有心律失常的数量以及对患者采取观察或使用新药治疗的行动方面,试验组和对照组之间没有统计学上的显著差异。然而,在试验组中,被转诊至心脏病专家处的患者明显少于对照组(<0.001)。

讨论

使用心电图传感器有助于家庭医生区分需要转诊至心脏病专家处的患者和他们可以治疗的患者。这种方法对医生和患者都有用,因为它缩短了开始治疗所需的时间,可在COVID-19等大流行期间使用,并降低了不必要的成本。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/07c2/7824824/09e5065dfb0a/micromachines-12-00055-g001.jpg

相似文献

7
Electrocardiography in primary care; is it useful?基层医疗中的心电图检查;它有用吗?
Int J Cardiol. 2000 Jul 31;74(2-3):199-205. doi: 10.1016/s0167-5273(00)00284-9.
8
Heart rhythm assessment in elite endurance athletes: A better method?精英耐力运动员的心律评估:一种更好的方法?
Front Sports Act Living. 2022 Jul 25;4:937525. doi: 10.3389/fspor.2022.937525. eCollection 2022.

本文引用的文献

1
In-Vivo Microsystems: A Review.体内微系统:综述。
Sensors (Basel). 2020 Sep 1;20(17):4953. doi: 10.3390/s20174953.
4
7
Predicting atrial fibrillation in primary care using machine learning.利用机器学习预测初级保健中的心房颤动。
PLoS One. 2019 Nov 1;14(11):e0224582. doi: 10.1371/journal.pone.0224582. eCollection 2019.
9
Heart Rate Extraction in a Headphone Using Infrared Thermometry.使用红外测温仪从耳机中提取心率。
IEEE Trans Biomed Circuits Syst. 2019 Oct;13(5):1052-1062. doi: 10.1109/TBCAS.2019.2930312. Epub 2019 Jul 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验