Suppr超能文献

脑启发式密集无线网络数据传输。

Brain-Inspired Data Transmission in Dense Wireless Network.

机构信息

Institute of Radiocommunications, Poznan University of Technology, 61-131 Poznan, Poland.

出版信息

Sensors (Basel). 2021 Jan 15;21(2):576. doi: 10.3390/s21020576.

Abstract

In this paper, the authors investigate the innovative concept of a dense wireless network supported by additional functionalities inspired by the human nervous system. The nervous system controls the entire human body due to reliable and energetically effective signal transmission. Among the structure and modes of operation of such an ultra-dense network of neurons and glial cells, the authors selected the most worthwhile when planning a dense wireless network. These ideas were captured, modeled in the context of wireless data transmission. The performance of such an approach have been analyzed in two ways, first, the theoretic limits of such an approach has been derived based on the stochastic geometry, in particular-based on the percolation theory. Additionally, computer experiments have been carried out to verify the performance of the proposed transmission schemes in four simulation scenarios. Achieved results showed the prospective improvement of the reliability of the wireless networks while applying proposed bio-inspired solutions and keeping the transmission extremely simple.

摘要

本文作者研究了一种创新概念,即通过受人体神经系统启发的额外功能支持密集无线网络。神经系统由于可靠且有效的能量信号传输而控制着整个人体。在神经元和神经胶质细胞这种超密集网络的结构和工作模式中,作者在规划密集无线网络时选择了最有价值的模式。这些想法被捕获并在无线数据传输的背景下进行建模。这种方法的性能已经从两种方式进行了分析,首先,基于随机几何,特别是基于渗流理论,推导出了这种方法的理论极限。此外,还进行了计算机实验以在四个模拟场景中验证所提出的传输方案的性能。所取得的结果表明,在应用所提出的仿生解决方案的同时保持传输极其简单的情况下,无线网络的可靠性具有可观的提升前景。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2f09/7830927/8d613633a188/sensors-21-00576-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验