Suppr超能文献

非线性弹性和阻尼控制叩头虫的超快动力学。

Nonlinear elasticity and damping govern ultrafast dynamics in click beetles.

机构信息

Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801;

Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA 24061.

出版信息

Proc Natl Acad Sci U S A. 2021 Feb 2;118(5). doi: 10.1073/pnas.2014569118.

Abstract

Many small animals use springs and latches to overcome the mechanical power output limitations of their muscles. Click beetles use springs and latches to bend their bodies at the thoracic hinge and then unbend extremely quickly, resulting in a clicking motion. When unconstrained, this quick clicking motion results in a jump. While the jumping motion has been studied in depth, the physical mechanisms enabling fast unbending have not. Here, we first identify and quantify the phases of the clicking motion: latching, loading, and energy release. We detail the motion kinematics and investigate the governing dynamics (forces) of the energy release. We use high-speed synchrotron X-ray imaging to observe and analyze the motion of the hinge's internal structures of four specimens. We show evidence that soft cuticle in the hinge contributes to the spring mechanism through rapid recoil. Using spectral analysis and nonlinear system identification, we determine the equation of motion and model the beetle as a nonlinear single-degree-of-freedom oscillator. Quadratic damping and snap-through buckling are identified to be the dominant damping and elastic forces, respectively, driving the angular position during the energy release phase. The methods used in this study provide experimental and analytical guidelines for the analysis of extreme motion, starting from motion observation to identifying the forces causing the movement. The tools demonstrated here can be applied to other organisms to enhance our understanding of the energy storage and release strategies small animals use to achieve extreme accelerations repeatedly.

摘要

许多小动物利用弹簧和闩锁来克服肌肉的机械功率输出限制。叩头虫利用弹簧和闩锁在胸铰链处弯曲身体,然后极快地伸直,从而产生咔嗒声。在不受约束的情况下,这种快速的咔嗒声会导致跳跃。虽然跳跃运动已经被深入研究,但使快速伸直的物理机制尚未被研究。在这里,我们首先确定并量化了咔嗒声运动的阶段:闩锁、加载和能量释放。我们详细描述了运动运动学,并研究了能量释放的控制动力学(力)。我们使用高速同步加速器 X 射线成像来观察和分析四个样本的铰链内部结构的运动。我们提供了软壳在铰链中通过快速回弹有助于弹簧机制的证据。通过频谱分析和非线性系统识别,我们确定了运动方程,并将甲虫模型化为非线性单自由度振荡器。二次阻尼和突跳屈曲被确定为主要的阻尼力和弹性力,分别在能量释放阶段驱动角位置。本研究中使用的方法为从运动观察到确定引起运动的力的极端运动分析提供了实验和分析指南。这里展示的工具可以应用于其他生物体,以增强我们对小动物用于实现反复极端加速度的能量存储和释放策略的理解。

相似文献

1
Nonlinear elasticity and damping govern ultrafast dynamics in click beetles.
Proc Natl Acad Sci U S A. 2021 Feb 2;118(5). doi: 10.1073/pnas.2014569118.
3
Scaling of Jumping Performance in Click Beetles (Coleoptera: Elateridae).
Integr Comp Biol. 2022 Jun 8. doi: 10.1093/icb/icac068.
4
Jumping without using legs: the jump of the click-beetles (Elateridae) is morphologically constrained.
PLoS One. 2011;6(6):e20871. doi: 10.1371/journal.pone.0020871. Epub 2011 Jun 16.
5
The mechanics of elastic loading and recoil in anuran jumping.
J Exp Biol. 2014 Dec 15;217(Pt 24):4372-8. doi: 10.1242/jeb.110296.
6
Latch-based control of energy output in spring actuated systems.
J R Soc Interface. 2020 Jul;17(168):20200070. doi: 10.1098/rsif.2020.0070. Epub 2020 Jul 22.
8
Jumping mechanism in the marsh beetles (Coleoptera: Scirtidae).
Sci Rep. 2022 Sep 22;12(1):15834. doi: 10.1038/s41598-022-20119-5.
10
A physical model of mantis shrimp for exploring the dynamics of ultrafast systems.
Proc Natl Acad Sci U S A. 2021 Aug 17;118(33). doi: 10.1073/pnas.2026833118.

引用本文的文献

1
Causal models of rate-independent damping in insect exoskeleta.
J Exp Biol. 2025 Jul 1;228(13). doi: 10.1242/jeb.249940. Epub 2025 Jul 7.
2
A rapid-response soft end effector inspired by the hummingbird beak.
J R Soc Interface. 2024 Sep;21(218):20240148. doi: 10.1098/rsif.2024.0148. Epub 2024 Sep 4.
3
Bistable Insect-Scale Jumpers with Tunable Energy Barriers for Multimodal Locomotion.
Adv Sci (Weinh). 2024 Sep;11(34):e2404404. doi: 10.1002/advs.202404404. Epub 2024 Jul 7.
4
Snapping for 4D-Printed Insect-Scale Metal-Jumper.
Adv Sci (Weinh). 2024 Jan;11(3):e2307088. doi: 10.1002/advs.202307088. Epub 2023 Nov 23.
5
Parallel And Divergent Morphological Adaptations Underlying The Evolution of Jumping Ability in Ants.
Integr Org Biol. 2023 Jul 25;5(1):obad026. doi: 10.1093/iob/obad026. eCollection 2023.
6
Structural damping renders the hawkmoth exoskeleton mechanically insensitive to non-sinusoidal deformations.
J R Soc Interface. 2023 May;20(202):20230141. doi: 10.1098/rsif.2023.0141. Epub 2023 May 17.
7
Insect-scale jumping robots enabled by a dynamic buckling cascade.
Proc Natl Acad Sci U S A. 2023 Jan 31;120(5):e2210651120. doi: 10.1073/pnas.2210651120. Epub 2023 Jan 23.
8
Hybrid Compliant Musculoskeletal System for Fast Actuation in Robots.
Micromachines (Basel). 2022 Oct 20;13(10):1783. doi: 10.3390/mi13101783.
9
Bioinspired robots walk, swim, slither and fly.
Nature. 2022 Sep 29. doi: 10.1038/d41586-022-03014-x.

本文引用的文献

3
The principles of cascading power limits in small, fast biological and engineered systems.
Science. 2018 Apr 27;360(6387). doi: 10.1126/science.aao1082.
5
The comparative hydrodynamics of rapid rotation by predatory appendages.
J Exp Biol. 2016 Nov 1;219(Pt 21):3399-3411. doi: 10.1242/jeb.140590.
6
Why are there no long distance jumpers among click-beetles (Elateridae)?
Bioinspir Biomim. 2013 Sep;8(3):036004. doi: 10.1088/1748-3182/8/3/036004. Epub 2013 Jul 10.
7
Jumping without using legs: the jump of the click-beetles (Elateridae) is morphologically constrained.
PLoS One. 2011;6(6):e20871. doi: 10.1371/journal.pone.0020871. Epub 2011 Jun 16.
9
Insect cuticular sclerotization: a review.
Insect Biochem Mol Biol. 2010 Mar;40(3):166-78. doi: 10.1016/j.ibmb.2009.10.007. Epub 2009 Nov 20.
10
Phylogeny, scaling, and the generation of extreme forces in trap-jaw ants.
J Exp Biol. 2008 Jul;211(Pt 14):2358-68. doi: 10.1242/jeb.015263.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验