Ding Quanzhen, Zhao Peng, Ma Yonghong, Chen Yusui
Department of Physics, and Center for Quantum Science and Engineering, Stevens Institute of Technology, Hoboken, NJ, 07030, USA.
Department of Physics, New York Institute of Technology, Old Westbury, NY, 11568, USA.
Sci Rep. 2021 Jan 19;11(1):1814. doi: 10.1038/s41598-021-81136-4.
The piezoelectric optomechanical devices supply a promising experimental platform to realize the coherent and effective control and measurement of optical circuits working in Terahertz (THz) frequencies via superconducting electron devices typically working in Radio (MHz) frequencies. However, quantum fluctuations are unavoidable when the size of mechanical oscillators enter into the nanoscale. The consequences of the noisy environment are still challenging due to the lack of analytical tools. In this paper, a semi-classical and full-quantum model of piezoelectric optomechanical systems coupled to a noisy bosonic quantum environment are introduced and solved in terms of quantum-state diffusion (QSD) trajectories in the non-Markovian regime. We show that the noisy environment, particularly the central frequency of the environment, can enhance the entanglement generation between optical cavities and LC circuits in some parameter regimes. Moreover, we observe the critical points in the coefficient functions, which can lead the different behaviors in the system. Besides, we also witness the entanglement transfers between macroscopic objects due to the memory effect of the environment. Our work can be applied in the fields of electric/ optical switches, and long-distance distribution in a large-scale quantum network.
压电光机械设备提供了一个很有前景的实验平台,可通过通常工作在射频(MHz)频率的超导电子器件,实现对工作在太赫兹(THz)频率的光学电路进行相干且有效的控制与测量。然而,当机械振荡器的尺寸进入纳米尺度时,量子涨落是不可避免的。由于缺乏分析工具,噪声环境的影响仍然具有挑战性。在本文中,引入了耦合到有噪声玻色子量子环境的压电光机械系统的半经典和全量子模型,并在非马尔可夫 regime 中根据量子态扩散(QSD)轨迹求解。我们表明,噪声环境,特别是环境的中心频率,在某些参数 regime 中可以增强光学腔和 LC 电路之间的纠缠产生。此外,我们观察到系数函数中的临界点,这可能导致系统中的不同行为。此外,由于环境的记忆效应,我们还见证了宏观物体之间的纠缠转移。我们的工作可应用于电/光开关以及大规模量子网络中的长距离分布等领域。