Suppr超能文献

具有高量子协同性的二维光机械晶体腔

Two-dimensional optomechanical crystal cavity with high quantum cooperativity.

作者信息

Ren Hengjiang, Matheny Matthew H, MacCabe Gregory S, Luo Jie, Pfeifer Hannes, Mirhosseini Mohammad, Painter Oskar

机构信息

Thomas J. Watson, Sr., Laboratory of Applied Physics, California Institute of Technology, Pasadena, CA, 91125, USA.

Kavli Nanoscience Institute, California Institute of Technology, Pasadena, CA, 91125, USA.

出版信息

Nat Commun. 2020 Jul 6;11(1):3373. doi: 10.1038/s41467-020-17182-9.

Abstract

Optomechanical systems offer new opportunities in quantum information processing and quantum sensing. Many solid-state quantum devices operate at millikelvin temperatures-however, it has proven challenging to operate nanoscale optomechanical devices at these ultralow temperatures due to their limited thermal conductance and parasitic optical absorption. Here, we present a two-dimensional optomechanical crystal resonator capable of achieving large cooperativity C and small effective bath occupancy n, resulting in a quantum cooperativity C ≡ C/n > 1 under continuous-wave optical driving. This is realized using a two-dimensional phononic bandgap structure to host the optomechanical cavity, simultaneously isolating the acoustic mode of interest in the bandgap while allowing heat to be removed by phonon modes outside of the bandgap. This achievement paves the way for a variety of applications requiring quantum-coherent optomechanical interactions, such as transducers capable of bi-directional conversion of quantum states between microwave frequency superconducting quantum circuits and optical photons in a fiber optic network.

摘要

光机械系统在量子信息处理和量子传感方面提供了新的机遇。许多固态量子器件在毫开尔文温度下运行,然而,由于其有限的热导率和寄生光学吸收,在这些超低温下操作纳米级光机械器件已被证明具有挑战性。在此,我们展示了一种二维光机械晶体谐振器,它能够实现大的协同性C和小的有效热库占有率n,从而在连续波光驱动下实现量子协同性C≡C/n>1。这是通过使用二维声子带隙结构来承载光机械腔实现的,该结构同时在带隙中隔离感兴趣的声学模式,同时允许热量通过带隙之外的声子模式移除。这一成果为各种需要量子相干光机械相互作用的应用铺平了道路,例如能够在微波频率超导量子电路和光纤网络中的光学光子之间双向转换量子态的换能器。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f0d2/7338352/f3f944cb56d7/41467_2020_17182_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验