Suppr超能文献

噪声和电荷离散性是超小型电子器件太赫兹运行的最终限制。

Noise and charge discreteness as ultimate limit for the THz operation of ultra-small electronic devices.

作者信息

Colomés Enrique, Mateos Javier, González Tomás, Oriols Xavier

机构信息

Departament d'Enginyeria Electrònica, Universitat Autònoma de Barcelona, Barcelona, Spain.

Departamento de Física Aplicada, Universidad de Salamanca, Salamanca, Spain.

出版信息

Sci Rep. 2020 Oct 2;10(1):15990. doi: 10.1038/s41598-020-72982-9.

Abstract

To manufacture faster electron devices, the industry has entered into the nanoscale dimensions and Terahertz (THz) working frequencies. The discrete nature of the few electrons present simultaneously in the active region of ultra-small devices generate unavoidable fluctuations of the current at THz frequencies. The consequences of this noise remain unnoticed in the scientific community because its accurate understanding requires dealing with consecutive multi-time quantum measurements. Here, a modeling of the quantum measurement of the current at THz frequencies is introduced in terms of quantum (Bohmian) trajectories. With this new understanding, we develop an analytic model for THz noise as a function of the electron transit time and the sampling integration time, which finally determine the maximum device working frequency for digital applications. The model is confirmed by either semi-classical or full- quantum time-dependent Monte Carlo simulations. All these results show that intrinsic THz noise increases unlimitedly when the volume of the active region decreases. All attempts to minimize the low signal-to-noise ratio of these ultra-small devices to get effective THz working frequencies are incompatible with the basic elements of the scaling strategy. One can develop THz electron devices, but they cannot have ultra-small dimensions. Or, one can fabricate ultra-small electron devices, but they cannot be used for THz working frequencies.

摘要

为了制造更快的电子设备,该行业已进入纳米尺度和太赫兹(THz)工作频率领域。在超小器件的有源区中同时存在的少数电子的离散特性,会在太赫兹频率下产生不可避免的电流波动。科学界尚未注意到这种噪声的影响,因为要准确理解它需要处理连续的多次量子测量。在此,我们引入了基于量子(玻姆)轨迹的太赫兹频率下电流量子测量的建模方法。基于这种新的理解,我们开发了一个解析模型,用于描述太赫兹噪声与电子渡越时间和采样积分时间的函数关系,这最终决定了数字应用中器件的最大工作频率。该模型通过半经典或全量子时间相关的蒙特卡罗模拟得到了验证。所有这些结果表明,当有源区体积减小时,本征太赫兹噪声会无限增加。所有试图最小化这些超小器件的低信噪比以获得有效的太赫兹工作频率的尝试,都与缩放策略的基本要素不相容。人们可以开发太赫兹电子器件,但它们不能具有超小尺寸。或者,人们可以制造超小电子器件,但它们不能用于太赫兹工作频率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b290/7532176/11a5c3742d16/41598_2020_72982_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验