Suppr超能文献

大都市空气中 NO 浓度预测的人工智能精度评估。

Artificial intelligence accuracy assessment in NO concentration forecasting of metropolises air.

机构信息

Department of Environmental Pollution, Faculty of Environment, College of Environment, Karaj, Iran.

Research Center of Environment and Sustainable Development and College of Environment, Tehran, Iran.

出版信息

Sci Rep. 2021 Jan 19;11(1):1805. doi: 10.1038/s41598-021-81455-6.

Abstract

Air quality has been the main concern worldwide and Nitrous oxide (NO) is one of the pollutants that have a significant effect on human health and environment. This study was conducted to compare the regression analysis and neural network model for predicting NO pollutants in the air of Tehran metropolis. Data has been collected during a year in the urban area of Tehran and was analyzed using multi-linear regression (MLR) and multilayer perceptron (MLP) neural networks. Meteorological parameters, urban traffic data, urban green space information, and time parameters are applied as input to forecast the daily concentration of NO in the air. The results demonstrate that artificial neural network modeling (R = 0.89, RMSE = 0.32) results in more accurate predictions than MLR analysis (R = 0.81, RMSE = 13.151). According to the result of sensitivity analysis of the model, the value of park area, the average of green space area and one-day time delay are the crucial parameters influencing NO concentration of air. Artificial neural network models could be a powerful, effective and suitable tool for analysis and modeling complex and non-linear relation of environmental variables such as ability in forecasting air pollution. Green spaces establishment has a significant role in NO reduction even more than traffic volume.

摘要

空气质量一直是全球关注的主要问题,而一氧化二氮(NO)是对人类健康和环境有重大影响的污染物之一。本研究旨在比较回归分析和神经网络模型在预测德黑兰大都市空气中的 NO 污染物方面的应用。数据是在德黑兰市区一年内收集的,使用多元线性回归(MLR)和多层感知器(MLP)神经网络进行分析。气象参数、城市交通数据、城市绿地信息和时间参数被用作输入,以预测空气中的 NO 日浓度。结果表明,人工神经网络建模(R=0.89,RMSE=0.32)的预测结果比多元线性回归分析(R=0.81,RMSE=13.151)更准确。根据模型的敏感性分析结果,公园面积、绿地面积平均值和一天的时间延迟值是影响空气 NO 浓度的关键参数。人工神经网络模型可以成为分析和建模环境变量复杂非线性关系的有力、有效和合适的工具,例如在空气污染预测方面。绿地的建立对减少 NO 有显著作用,甚至比交通量的影响更大。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a27d/7815891/d28c6e8750de/41598_2021_81455_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验