Uche-Soria Manuel, Tabuenca Bernardo, Halcón-Gibert Gonzalo, Núñez-Guerrero Yilsy
Department of Engineering Organization, Business Administration and Statistics, Universidad Politécnica de Madrid, 28006 Madrid, Spain.
Department of Computer Systems, Universidad Politécnica de Madrid, 28031 Madrid, Spain.
Sensors (Basel). 2025 Mar 28;25(7):2163. doi: 10.3390/s25072163.
The growing urgency to address urban air quality and climate change has intensified the need for sustainable mobility solutions that mitigate vehicular emissions. Bike-sharing systems (BSSs) represent a viable alternative; however, their precise environmental impact remains insufficiently explored. This study quantifies and forecasts reductions in CO and NO emissions resulting from BSS usage in Madrid by integrating real-time IoT sensor data with an advanced predictive model. The proposed framework effectively captures nonlinear and seasonal mobility and emission patterns, achieving high predictive accuracy while demonstrating significant energy savings. These findings confirm the environmental benefits of BSSs and provide urban planners and policymakers with a robust tool to extend and replicate this analysis in other cities, fostering sustainable urban mobility and improved air quality.
应对城市空气质量和气候变化的紧迫性日益增加,这强化了对减轻车辆排放的可持续交通解决方案的需求。共享单车系统(BSS)是一种可行的替代方案;然而,它们对环境的确切影响仍未得到充分探索。本研究通过将实时物联网传感器数据与先进的预测模型相结合,量化并预测了马德里使用共享单车系统导致的一氧化碳(CO)和氮氧化物(NO)排放量的减少。所提出的框架有效地捕捉了非线性和季节性的出行及排放模式,在实现显著节能的同时达到了较高的预测精度。这些发现证实了共享单车系统的环境效益,并为城市规划者和政策制定者提供了一个强大的工具,以便在其他城市扩展和复制此分析,促进可持续城市交通和改善空气质量。