Zhang Xin, Hu Can, Yuan Yu-Pei, Song Peng, Kong Chun-Yan, Wu Hai-Ming, Xu Si-Chi, Ma Zhen-Guo, Tang Qi-Zhu
Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan University, Jiefang Road 238, Wuhan, 430060, People's Republic of China.
Cell Biol Toxicol. 2021 Dec;37(6):873-890. doi: 10.1007/s10565-021-09581-5. Epub 2021 Jan 20.
Cardiac endothelium communicates closely with adjacent cardiac cells by multiple cytokines and plays critical roles in regulating fibroblasts proliferation, activation, and collagen synthesis during cardiac fibrosis. E26 transformation-specific (ETS)-related gene (ERG) belongs to the ETS transcriptional factor family and is required for endothelial cells (ECs) homeostasis and cardiac development. This study aims at investigating the potential role and molecular basis of ERG in fibrotic remodeling within the adult heart. We observed that ERG was abundant in murine hearts, especially in cardiac ECs, but decreased during cardiac fibrosis. ERG knockdown within murine hearts caused spontaneously cardiac fibrosis and dysfunction, accompanied by the activation of multiple Smad-dependent and independent pathways. However, the direct silence of ERG in cardiac fibroblasts did not affect the expression of fibrotic markers. Intriguingly, ERG knockdown in human umbilical vein endothelial cells (HUVECs) promoted the secretion of endothelin-1 (ET-1), which subsequently accelerated the proliferation, phenotypic transition, and collagen synthesis of cardiac fibroblasts in a paracrine manner. Suppressing ET-1 with either a neutralizing antibody or a receptor blocker abolished ERG knockdown-mediated deleterious effect in vivo and in vitro. This pro-fibrotic effect was also negated by RGD (Arg-Gly-Asp)-peptide magnetic nanoparticles target delivery of ET-1 small interfering RNA to ECs in mice. More importantly, we proved that endothelial ERG overexpression notably prevented pressure overload-induced cardiac fibrosis. Collectively, endothelial ERG alleviates cardiac fibrosis via blocking ET-1-dependent paracrine mechanism and it functions as a candidate for treating cardiac fibrosis. • ERG is abundant in murine hearts, especially in cardiac ECs, but decreased during fibrotic remodeling. • ERG knockdown causes spontaneously cardiac fibrosis and dysfunction. • ERG silence in HUVECs promotes the secretion of endothelin-1, which in turn activates cardiac fibroblasts in a paracrine manner. • Endothelial ERG overexpression prevents pressure overload-induced cardiac fibrosis.
心脏内皮细胞通过多种细胞因子与相邻的心脏细胞密切沟通,并在心脏纤维化过程中调节成纤维细胞的增殖、激活和胶原蛋白合成方面发挥关键作用。E26转化特异性(ETS)相关基因(ERG)属于ETS转录因子家族,是内皮细胞(ECs)稳态和心脏发育所必需的。本研究旨在探讨ERG在成年心脏纤维化重塑中的潜在作用和分子基础。我们观察到ERG在小鼠心脏中丰富,尤其是在心脏内皮细胞中,但在心脏纤维化过程中减少。在小鼠心脏中敲低ERG会导致自发性心脏纤维化和功能障碍,同时伴有多种Smad依赖性和非依赖性途径的激活。然而,在心脏成纤维细胞中直接沉默ERG并不影响纤维化标志物的表达。有趣的是,在人脐静脉内皮细胞(HUVECs)中敲低ERG会促进内皮素-1(ET-1)的分泌,随后以旁分泌方式加速心脏成纤维细胞的增殖、表型转变和胶原蛋白合成。用中和抗体或受体阻滞剂抑制ET-1可消除ERG敲低在体内和体外介导的有害作用。RGD(精氨酸-甘氨酸-天冬氨酸)肽磁性纳米颗粒将ET-1小干扰RNA靶向递送至小鼠内皮细胞也可消除这种促纤维化作用。更重要的是,我们证明内皮ERG过表达显著预防压力超负荷诱导的心脏纤维化。总之,内皮ERG通过阻断ET-1依赖性旁分泌机制减轻心脏纤维化,它可作为治疗心脏纤维化候选药物。
• ERG在小鼠心脏中丰富,尤其是在心脏内皮细胞中,但在纤维化重塑过程中减少。
• ERG敲低导致自发性心脏纤维化和功能障碍。
• HUVECs中ERG沉默促进内皮素-1的分泌,进而以旁分泌方式激活心脏成纤维细胞。
• 内皮ERG过表达预防压力超负荷诱导的心脏纤维化。