Suppr超能文献

钙钛矿太阳能电池中物理混合界面层引起的光学和电子损耗

Optical and Electronic Losses Arising from Physically Mixed Interfacial Layers in Perovskite Solar Cells.

作者信息

Subedi Biwas, Song Zhaoning, Chen Cong, Li Chongwen, Ghimire Kiran, Junda Maxwell M, Subedi Indra, Yan Yanfa, Podraza Nikolas J

机构信息

Department of Physics and Astronomy and the Wright Center for Photovoltaics Innovation and Commercialization, University of Toledo, Toledo 43606, Ohio, United States.

出版信息

ACS Appl Mater Interfaces. 2021 Feb 3;13(4):4923-4934. doi: 10.1021/acsami.0c16364. Epub 2021 Jan 20.

Abstract

Perovskite solar cell device performance is affected by optical and electronic losses. To minimize these losses in solar cells, it is important to identify their sources. Here, we report the optical and electronic losses arising from physically mixed interfacial layers between the adjacent component materials in highly efficient two terminal (2T) all-perovskite tandem, single-junction wide-bandgap, and single-junction narrow-bandgap perovskite-based solar cells. Physically mixed interfacial layers as the sources of optical and electronic losses are identified from spectroscopic ellipsometry measurements and data analysis followed by comparisons of simulated and measured external quantum efficiency spectra. Parasitic absorbance in the physically mixed regions between silver metal electrical contacts and electron transport layers (ETLs) near the back contact and a physical mixture of commercial indium tin oxide and hole transport layers (HTL) near the front electrical contact lead to substantial optical loss. A lower-density void + perovskite nucleation layer formed during perovskite deposition at the interface between the perovskite absorber layer and the HTL causes electronic losses because of incomplete collection of photogenerated carriers likely originating from poor coverage and passivation of the initially nucleating grains.

摘要

钙钛矿太阳能电池的器件性能受光学和电子损耗的影响。为了使太阳能电池中的这些损耗最小化,识别其来源很重要。在此,我们报告了在高效双端(2T)全钙钛矿串联、单结宽带隙和单结窄带隙钙钛矿基太阳能电池中,相邻组成材料之间物理混合的界面层所产生的光学和电子损耗。通过光谱椭偏测量和数据分析,随后比较模拟和测量的外量子效率光谱,确定了作为光学和电子损耗来源的物理混合界面层。银金属电接触与背接触附近的电子传输层(ETL)之间物理混合区域的寄生吸收,以及前电接触附近商业氧化铟锡与空穴传输层(HTL)的物理混合物,导致了大量的光学损耗。在钙钛矿吸收层与HTL之间的界面处,钙钛矿沉积过程中形成的低密度空洞 + 钙钛矿成核层会导致电子损耗,这是由于光生载流子收集不完全造成的,这可能源于初始成核晶粒的覆盖不良和钝化不足。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验