Datta Kunal, Wang Junke, Zhang Dong, Zardetto Valerio, Remmerswaal Willemijn H M, Weijtens Christ H L, Wienk Martijn M, Janssen René A J
Molecular Materials and Nanosystems and Institute of Complex Molecular Systems, Eindhoven University of Technology, Partner in Solliance, P.O. Box 513, Eindhoven, 5600 MB, The Netherlands.
TNO, Partner in Solliance, High Tech Campus 21, Eindhoven, 5656 AE, The Netherlands.
Adv Mater. 2022 Mar;34(11):e2110053. doi: 10.1002/adma.202110053. Epub 2022 Jan 24.
Perovskite-based multijunction solar cells are a potentially cost-effective technology that can help surpass the efficiency limits of single-junction devices. However, both mixed-halide wide-bandgap perovskites and lead-tin narrow-bandgap perovskites suffer from non-radiative recombination due to the formation of bulk traps and interfacial recombination centers which limit the open-circuit voltage of sub-cells and consequently of the integrated tandem. Additionally, the complex optical stack in a multijunction solar cell can lead to losses stemming from parasitic absorption and reflection of incident light which aggravates the current mismatch between sub-cells, thereby limiting the short-circuit current density of the tandem. Here, an integrated all-perovskite tandem solar cell is presented that uses surface passivation strategies to reduce non-radiative recombination at the perovskite-fullerene interfaces, yielding a high open-circuit voltage. By using optically benign transparent electrode and charge-transport layers, absorption in the narrow-bandgap sub-cell is improved, leading to an improvement in current-matching between sub-cells. Collectively, these strategies allow the development of a monolithic tandem solar cell exhibiting a power-conversion efficiency of over 23%.
基于钙钛矿的多结太阳能电池是一种具有潜在成本效益的技术,有助于突破单结器件的效率限制。然而,混合卤化物宽带隙钙钛矿和铅锡窄带隙钙钛矿都存在非辐射复合问题,这是由于体陷阱和界面复合中心的形成,限制了子电池的开路电压,进而限制了集成串联电池的开路电压。此外,多结太阳能电池中复杂的光学堆叠会导致入射光的寄生吸收和反射造成损失,这加剧了子电池之间的电流失配,从而限制了串联电池的短路电流密度。在此,展示了一种集成全钙钛矿串联太阳能电池,它采用表面钝化策略来减少钙钛矿 - 富勒烯界面处的非辐射复合,从而产生高开路电压。通过使用光学性能良好的透明电极和电荷传输层,窄带隙子电池中的吸收得到改善,导致子电池之间的电流匹配得到改善。总体而言,这些策略使得能够开发出功率转换效率超过23%的单片串联太阳能电池。