Suppr超能文献

对CdE(E为S、Se和Te)纳米片进行表面改性,以获得更厚的纳米片和具有限域诱导颗粒内I型能级排列的同质结构。

Surface Modification of CdE (E: S, Se, and Te) Nanoplatelets to Reach Thicker Nanoplatelets and Homostructures with Confinement-Induced Intraparticle Type I Energy Level Alignment.

作者信息

Moghaddam Nicolas, Dabard Corentin, Dufour Marion, Po Hong, Xu Xiangzhen, Pons Thomas, Lhuillier Emmanuel, Ithurria Sandrine

机构信息

CNRS, Laboratoire de Physique et d'Etude des Matériaux, ESPCI-Paris, PSL Research University, Sorbonne Université UPMC Univ Paris 06, 10 rue Vauquelin, 75005 Paris, France.

CNRS, Institut des NanoSciences de Paris, INSP, Sorbonne Université, F-75005 Paris, France.

出版信息

J Am Chem Soc. 2021 Feb 3;143(4):1863-1872. doi: 10.1021/jacs.0c10336. Epub 2021 Jan 20.

Abstract

Two-dimensional II-VI semiconductor nanoplatelets (NPLs) present exceptionally narrow optical features due to their thickness defined at the atomic scale. Because thickness drives the band-edge energy, its control is of paramount importance. Here, we demonstrate that native carboxylate ligands can be replaced by halides that partially dissolve cadmium chalcogenide NPLs at the edges. The released monomers then recrystallize on the wide top and bottom facets, leading to an increase in NPL thickness. This dissolution/recrystallization method is used to increase NPL thickness to 9 ML while using 3 ML NPLs as the starting material. We also demonstrate that this method is not limited to CdSe and can be extended to CdS and CdTe to grow thick NPLs. When the metal halide precursor is introduced with a chalcogenide precursor on the NPLs, CdSe/CdSe, CdTe/CdTe, and CdSe/CdTe core/shell homo- and heterostructures are achieved. Finally, when an incomplete layer is grown, NPLs with steps are synthesized. These stress-free homostructures are comparable to type I heterostructures, leading to recombination of the exciton in the thicker area of the NPLs. Following the growth of core/crown and core/shell NPLs, it affords a new degree of freedom for the growth of structured NPLs with designed band engineering, which has so far been only achievable for heteromaterial nanostructures.

摘要

二维II-VI族半导体纳米片(NPLs)由于其在原子尺度上定义的厚度而呈现出异常窄的光学特性。由于厚度决定了带边能量,因此对其进行控制至关重要。在这里,我们证明了天然羧酸配体可以被卤化物取代,卤化物会使硫属镉化物NPLs在边缘部分溶解。释放出的单体随后在宽阔的顶面和底面上重新结晶,导致NPL厚度增加。这种溶解/重结晶方法用于将NPL厚度增加到9 ML,同时使用3 ML的NPLs作为起始材料。我们还证明了这种方法不仅限于CdSe,还可以扩展到CdS和CdTe以生长厚的NPLs。当金属卤化物前驱体与硫属元素前驱体一起引入到NPLs上时,可以实现CdSe/CdSe、CdTe/CdTe和CdSe/CdTe核/壳同质和异质结构。最后,当生长不完全层时,可以合成具有台阶的NPLs。这些无应力的同质结构与I型异质结构相当,导致激子在NPLs较厚区域发生复合。在核/冠和核/壳NPLs生长之后,它为具有设计能带工程的结构化NPLs的生长提供了新的自由度,而这迄今为止仅在异质材料纳米结构中才能实现。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验