Yang Yusha, Shen Qiu, Zhang Chunchun, Rowell Nelson, Zhang Meng, Chen Xiaoqin, Luan Chaoran, Yu Kui
Engineering Research Center in Biomaterials, Sichuan University, Chengdu, Sichuan 610065, P. R. China.
Analytical & Testing Center, Sichuan University, Chengdu, Sichuan 610065, P. R. China.
ACS Cent Sci. 2023 Mar 8;9(3):519-530. doi: 10.1021/acscentsci.2c01394. eCollection 2023 Mar 22.
The field of isomerization reactions for colloidal semiconductor magic-size clusters (MSCs) remains largely unexplored. Here, we show that MSCs isomerize via two fundamental pathways that are regulated by the acidity and amount of an incoming ligand, with CdTeSe as the model system. When MSC-399 isomerizes to MSC-422 at room temperature, the peak red-shift from 399 to 422 nm is continuous (pathway 1) and/or stepwise (pathway 2) as monitored in situ and in real time by optical absorption spectroscopy. We propose that pathway 1 is direct, with intracluster configuration changes and a relatively large energy barrier. Pathway 2 is indirect, assisted by the MSC precursor compounds (PCs), from MSC-399 to PC-399 to PC-422 to MSC-422. Pathway 1 is activated when PC-422 to MSC-422 is suppressed. Our findings unambiguously suggest that when a change occurs directly on a nanospecies, its absorption peak continuously shifts. The present study provides an in-depth understanding of the transformative behavior of MSCs via ligand-induced isomerization upon external chemical stimuli.
胶体半导体魔法尺寸团簇(MSC)的异构化反应领域在很大程度上仍未得到充分探索。在此,我们以CdTeSe为模型体系表明,MSC通过两种基本途径进行异构化,这两种途径受引入配体的酸度和数量调控。当MSC - 399在室温下异构化为MSC - 422时,通过光吸收光谱原位实时监测,从399纳米到422纳米的峰值红移是连续的(途径1)和/或逐步的(途径2)。我们提出途径1是直接的,伴随着团簇内构型变化且具有相对较大的能垒。途径2是间接的,由MSC前体化合物(PC)辅助,从MSC - 399到PC - 399再到PC - 422最后到MSC - 422。当从PC - 422到MSC - 422的过程受到抑制时,途径1被激活。我们的研究结果明确表明,当纳米物种上直接发生变化时,其吸收峰连续移动。本研究通过外部化学刺激下配体诱导的异构化,深入了解了MSC的转变行为。